# VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

# **ENVIRONMENTAL DOCUMENTATION**

# INITIAL STUDY AND MITIGATED NEGATIVE DECLARATION

MAY 2023 (Revised OCTOBER 2023)



DEE JASPAR & ASSOCIATES, INC. CONSULTING CIVIL ENGINEERS 2730 UNICORN ROAD, BLDG. A BAKERSFIELD, CA 93308 PHONE (661) 393-4796 FAX (661) 393-4799

# **Table of Contents**

| ۱.    | Mitiga  | ated Negative Declaration          | Page 1  |
|-------|---------|------------------------------------|---------|
| II.   | Projec  | ct Name                            | Page 1  |
| III.  | Projec  | ct Location                        | Page 1  |
| IV.   | Projec  | ct Description                     | Page 1  |
| V.    | Conta   | ct Information                     | Page 5  |
| VI.   | Findin  | ngs                                | Page 5  |
| VII.  | Mitiga  | ation Measures                     | Page 5  |
| VIII. | Initial | Study                              | Page 11 |
| IX.   | Evalua  | ation of Environmental Impacts     | Page 14 |
|       | i.      | Aesthetics                         | Page 16 |
|       | ii.     | Agriculture Resources              | Page 19 |
|       | iii.    | Air Quality                        | Page 22 |
|       | iv.     | Biological Resources               | Page 26 |
|       | ν.      | Cultural Resources                 | Page 34 |
|       | vi.     | Energy                             | Page 37 |
|       | vii.    | Geology and Soils                  | Page 39 |
|       | viii.   | Greenhouse Gas Emissions           | Page 44 |
|       | ix.     | Hazards and Hazardous Materials    | Page 45 |
|       | х.      | Hydrology and Water Quality        | Page 49 |
|       | xi.     | Land Use Planning                  | Page 55 |
|       | xii.    | Mineral Resources                  | Page 56 |
|       | xiii.   | Noise                              | Page 57 |
|       | xiv.    | Population and Housing             | Page 61 |
|       | xv.     | Public Services                    | Page 62 |
|       | xvi.    | Recreation                         | Page 64 |
|       | xvii.   | Transportation                     | Page 65 |
|       | xviii.  | Tribal Cultural Resources          | Page 67 |
|       | xix.    | Utilities and Service Systems      | Page 69 |
|       | xx.     | Wildfire                           | Page 72 |
|       | xxi.    | Mandatory Findings of Significance | Page 75 |

# Figures:

| Figure 1 – Site Location Map      | Page 16 |
|-----------------------------------|---------|
| Figure 2 – Zoning Map             | Page 20 |
| Figure 3 – Wetlands Map           | Page 32 |
| Figure 4 – Fault Zone Map         | Page 40 |
| Figure 5 – School Map             | Page 47 |
| Figure 6 – Flood Zone Map         | Page 52 |
| Figure 7 – Fire Severity Zone Map | Page 73 |

Exhibits:

Exhibit A – Project Site Plan

Exhibit B – Project Description

Exhibit C – Construction Phase – Air Emissions Data

Exhibit D – Biological Clearance Survey

Exhibit E – Cultural Resources Assessment

Exhibit F – Native American Heritage Commission Sacred Lands File Search

Exhibit G – NRCS Soil Survey Map

Exhibit H – Flood Insurance Map

Exhibit I – National Wetlands Inventory Map

Exhibit J – Map of Schools in Project Vicinity

Exhibit K – List of Hazardous Materials Sites Per Calif. Dept. of Toxic Substances Control

Exhibit L – Comment Letters and Responses

# I. <u>MITIGATED NEGATIVE DECLARATION</u>

As Lead Agency under the California Environmental Quality Act (CEQA), North of the River Recreation and Park District (NRRPD) has reviewed the project described below to determine whether it could have a significant impact on the environment because of its development. In accordance with CEQA Guidelines Section 15382, "significant effect on the environment" means a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project, including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic or aesthetic significance.

### II. **PROJECT NAME**

Meadow Creek Well Water Supply and Treatment Facility

### III. <u>PROJECT LOCATION</u>

The project is located on APN 526-010-14 near the intersection of Meadow Creek Street and Polo Drive in Section 18, T29S, R27E, M.D.B.&M. in the City of Bakersfield. See Figure 1 herein.

### IV. <u>PROJECT DESCRIPTION</u>

The proposed project is for Vaughn Water Company and involves drilling and equipping a new municipal water well, constructing an Ozone Treatment facility, and connecting it to the existing VWC distribution system.

The well site property is approximately 105-ft by 210-ft or approximately ½acre. The site is currently irrigated lawn as part of the community park landscaping. The grass and sprinkler system will be removed within the limits of the well site and the site graded to be level and uniform. The earthwork will involve moving approximately 470 cubic yards and the material will balance so there is no import or off-haul of dirt.

The site grading is anticipated to involve approximately 20 working days. It is anticipated that the following pieces of equipment will be used during construction activities:

- Loader
- Backhoe
- Skip and Drag
- Sheepsfoot Compactor

The well is planned to be drilled to an approximate depth of 1,500-ft using the reverse rotary method. Water quality zone testing will be performed in the well

pilot hole in an effort to complete a well not requiring treatment. The well construction work will include installing a 50-ft deep, 36-inch diameter steel conductor, drilling a 17 ½ - inch diameter pilot hole, performing geophysical logging, water quality depth sampling, reaming of the pilot hole to 28-inch diameter, installation of 16-inch diameter steel casing, installation of gravel pack, installation of a cement annular seal, and well development. The initial development water will be disposed of in a 20,000 gallon tank and removed from the site. The development water will then be discharged to the existing storm drain system. It is expected that the completed well will have hydrogen sulfide and that well head treatment in the form of ozonation will be used to remove taste and odor.

The production well drilling phase will involve the drilling, construction, and development of a new municipal water supply well. It is anticipated to involve approximately 90 working days with well drilling activating taking place 24 hours per day, seven days per week for approximately 45 of those working days. It is anticipated that the following pieces of equipment will be used during construction activities:

- Well Drilling Rig with Pipe Trailer
- Mud Pits
- Backhoe
- Loader
- Forklift

The site will require over-excavation to 18-inches below proposed concrete foundations and will be recompacted to 90% relative compaction to reduce the potential for settlement. Concrete foundations will be constructed for the deep well, the treatment building, the booster pumps, and the hydropneumatic tank.

The deep well will have a 10-ft by 10-ft by 30-in thick concrete foundation and be equipped with a vertical turbine pump and vertical hollowshaft electric motor with a variable speed drive. The well will have a 10-ft by 10-ft by 11-ft high removable metal enclosure building for noise attenuation. The site will be secured with approximately 575-ft of 8-ft tall masonry block wall and include a drive gate and a personnel gate to Meadow Creek Street for access. The well site will be surfaced with <sup>3</sup>/<sub>4</sub>" Class II aggregate base with the limits being the perimeter block wall. The 16-inch well discharge piping will be routed into an approximate 36-ft long by 28-ft wide by 16-ft tall steel building structure with a concrete foundation that is 46-ft by 38-ft by 6-in thick and that houses the electrical equipment including the meter main, motor control center, and PLC and also houses the treatment equipment. Two air conditioner units will be mounted on a concrete pad on the exterior of the building for interior climate control.

The flow rate from the well will be regulated by a flow control valve to maintain 2,500 gpm and will be metered. The water will pass through a Mazzei flash reactor for mixing of the raw well water with a treated water bypass prior to entering the stainless steel storage tank. Ozone gas will be injected into a bypass flow stream of approximately 250 gpm as a strong oxidant to convert the sulfide to sulfate. The pressure drop across a venturi injector will create a suction that draws in the ozone. The ozone will be generated by a 54 lb/day ozone generator (Model CFS-14) manufactured by Suez. The ozone generator will be supplied cooling water and dry oxygen. It will utilize oxygen and electricity to convert oxygen to ozone. All ozone piping will be stainless steel. The process piping, electrical equipment, ozone generator, air compressor, air dryer, oxygen concentrator, and receiver tanks will be installed in the air-conditioned metal treatment building. An ozone analyzer will be installed inside the treatment building and at the ozone destruct unit to detect any ozone leaks and in that event the analyzer will send an alarm and shutdown the well and ozone operation.

A 6-ft by 7-ft by 8-in thick concrete foundation for a 12.5% sodium hypochlorite storage tank and chemical feed pump is located between the treatment building and the stainless steel storage tank. The well discharge piping will exit the building, transition underground, and resurface and enter an AWWA D103 stainless steel bolted tank that will be constructed with a gravel ring foundation. The stainless steel contact tank dimensions will be 30-ft diameter and 16-ft side shell height. The tank is also equipped with an ozone destruct unit that converts any residual ozone gas back to oxygen. The stainless steel tank discharge piping will be 18-inch diameter steel piping that feeds the suction header for three horizontal centrifugal split-case booster pumps. Each booster pump will have a concrete foundation that is 3-ft by 6-ft by 36-in thick. The booster pumps are equipped with variable speed drives. Two of the pumps are 50hp and the third pump is 100hp. The pump discharge piping then enters a 16-in diameter discharge header. The discharge header enters a 3,000-gallon hydropneumatic pressure vessel. There are two pressure vessel concrete footings each 13-ft long by 5-ft wide by 24-in thick. The 16-inch diameter booster station piping will transition below ground after the pressure vessel and transition to 16-inch C900 PVC pipe. The piping will connect to the existing VWC distribution system at the intersection of Meadow Creek Street and Polo Drive on the west side of the well site, approximately 30-ft in length, and a second connection will be made to the east to the existing VWC distribution system piping in Verdugo Lane via a 16-inch C900 PVC conveyance pipe routed approximately 650-ft east through the park in a private easement.

The well and treatment facility will be painted a neutral color (tan) and site landscaping installed around the perimeter of the site for it to be aesthetically pleasing and blend in with the adjacent park and neighborhood.

The well equipping and site development phase is anticipated to involve approximately 12 months. However, equipment will not run continually or on a daily basis throughout this entire construction period. It is anticipated that the following heavy pieces of equipment will be used for approximately 100 working days during construction activities:

- Excavator
- Loader
- Backhoe
- Crane
- Concrete Trucks
- Generator
- Air Compressor
- Small Tools
- Service Trucks

Construction of the project is anticipated to span an approximate 18 to 24 month period.

The well site will be routinely visited by a Vaughn Water Company operator – typically once per day to check on the operation and inspect for any issues along with the preparation of a daily report. Routine maintenance operations will include:

- Well Lubrication Check daily
- Chlorine Tank Level Check daily
- Chlorine Residual Check daily
- Water Production Reading Check daily
- Check dew point monthly
- Booster Pump check monthly
- Well water level measurements monthly
- Dryer Unit oil vapor filter replacement quarterly
- Hydrocarbon filter replacements on dryer units, compressor units, fisher

valves - quarterly

- Air Conditioning service quarterly
- Site Cleanup quarterly
- Oil changes for electric motors semi-annual

### A back-up emergency generator will not be installed as part of this project.

The document and documents referenced in the Initial Study/Mitigated Negative Declaration are available for review at the North of the River Recreation and Park District located at 3825 Riverlakes Drive, Bakersfield, CA 93312.

As mandated by the California Environmental Quality Act (CEQA), the public review period for this document was 30 days (CEQA Section 15073[b]). The public review period began on July 28, 2023 and ended on Thursday, August 31, 2023. For further information, please contact Curtis M. Skaggs at (661) 393-4796 or cskaggs@djacivil.com.

### V. <u>CONTACT INFORMATION</u>

Vaughn Water Company 10014 Glenn Street Bakersfield, CA 93312 Contact Person: Van Grayer Phone: (661) 589-2931

### VI. <u>FINDINGS</u>

As Lead Agency, North of the River Recreation and Park District (NRRPD) finds that the project will not have a significant impact on the environment. The Environmental Checklist (CEQA Guidelines Appendix G) or Initial Study (IS) identified one or more potentially significant effects on the environment, but revisions to the project have been made before the release of this Mitigated Negative Declaration (MND) or mitigation measures will be implemented that reduce all potentially significant impacts to less-than-significant levels. The Lead Agency further finds that there is no substantial evidence that this project would have a significant effect on the environment.

# VII. <u>MITIGATION MEASURES</u>

### AESTHETIC MITIGATION MEASURES

- AES-1 The project lighting will be less than 20-ft tall and the light fixtures shielded and directed downward to comply with the Kern County "Dark Skies Ordinance".
- AES-2 The site will be painted a neutral color (tan), be screened with an 8-ft tall masonry block wall, and have landscaping installed around the perimeter of the site.

### AIR QUALITY MITIGATION MEASURES

- AQ-1 Water will be applied to the project site during construction grading, trenching, and backfilling operations to control dust and keep the project area clean.
- AQ-2 The contract documents will require the Contractor to obtain and comply with a San Joaquin Valley Air Pollution Control District Dust Control Plan and to permit the ozone treatment and destruct system.

### BIOLOGICAL RESOURCES MITIGATION MEASURES

BIO-1 The following are the Biological Recommendations (BR) proposed by Pruett Biological Resource Consulting, Inc. which are intended to reduce the potential impacts to biological resources during construction activities:

> Pruett Biological Resource Consulting Incorporated's Biological Report states, "If ground-disturbing activities are planned during the nesting season for migratory birds that may nest on or near the site (generally February 1 through August 31), nesting bird surveys are recommended prior to the commencement of ground disturbance for project activities. If nesting birds are present, no new construction or ground disturbance should occur within an appropriate avoidance area for that species until young have fledged, unless otherwise approved and monitored by a qualified onsite biologist."

In addition to the above recommended species-specific protection measures, the following additional general measures should be adopted that represent best management practices:

- BIO-2 Traffic restraints and signs should be established to minimize temporary disturbances during construction. All construction traffic should be restricted to designated access roads and routes, project site, storage areas, and staging and parking areas. Off-road traffic outside designated project boundaries will be prohibited. A 20 mile-per-hour (32 kilometer-per-hour) speed limit should be observed in all project construction areas, except as otherwise posted on County and City roads.
- BIO-3 All equipment storage and parking during construction activities should be confined to the on-site construction area or public road right-of-ways.
- BIO-4 All project construction activities involving excavation or surface disturbance should be limited to daylight hours with the exception of the well drilling activities.

- BIO-5 Trenches should be inspected for entrapped wildlife each morning, prior to the onset of construction. Before such holes or trenches are filled, they should be thoroughly inspected for entrapped animals. Any animals so discovered shall be allowed to escape voluntarily, without harassment, before construction activities resume, or removed from the trench or hole by a qualified biologist and allowed to escape unimpeded.
- BIO-6 All construction pipes, poles, culverts, hoses or similar structures stored at the construction site for one or more overnight periods should be capped or the ends covered in a way that prevents wildlife entrapment. Unburied pipes laid in trenches overnight should be capped. If a kit fox or other listed species is discovered inside a pipe, that section of pipe will not be moved until the animal leaves on its own, or the USFWS and the CDFW have been consulted.
- BIO-7 All food-related trash items such as wrappers, cans, bottles and food scraps generated by project activities shall be disposed of in closed containers and removed at least once each week from the site. Deliberate feeding of wildlife is prohibited.
- BIO-8 To prevent harassment of special-status species, construction personnel should not be allowed to have firearms or pets on the project site.
- BIO-9 All equipment and work-related materials shall be contained in closed containers either in the work area or on vehicles. Loose items (e.g., rags, hose, etc.) should be stored within closed containers or enclosed in vehicles when on the work site.
- BIO-10 All liquids should be in closed, covered containers. Any spills of hazardous liquids should not be left unattended until cleanup has been completed.
- BIO-11 Use of rodenticides and herbicides on the project site should be prohibited unless approved by the USFWS and the CDFW. This is necessary to prevent primary or secondary poisoning of specialstatus species using adjacent habitats, and to avoid the depletion of prey upon which they depend. Label restrictions and other restrictions imposed by the U.S. Environmental Protection Agency

(EPA), the California Department of Food and Agricultural (CDFA), and other state and federal legislation shall be implemented. If rodent control must be conducted, zinc phosphide shall be used because of its proven lower risk to kit foxes.

- BIO-12 Any employee who inadvertently kills or injures a listed species, or who finds any such animal dead, injured, or entrapped, shall be required to report the incident immediately to a designated site representative (e.g., foreman, project manager, environmental inspector, etc.), except animals killed on state and county roads when such mortality is not associated with project traffic. In the case of entrapped animals that are listed species, escape ramps or structures shall be installed immediately, if possible, to allow the subject animal(s) to escape unimpeded.
- BIO-13 In the case of injured special-status wildlife, the CDFW shall be notified immediately. During business hours, Monday through Friday, the phone number is (559) 243-4017. For non-business hours, report to (800) 952-5400. Notification shall include the date, time, location, and circumstances of the incident. Instructions provided by the CDFW for the care of the injured animal shall be followed by the contractor onsite.
- BIO-14 In the case of dead animal(s) that are listed as threatened or endangered, the USFWS and the CDFW shall be immediately (within 24 hours) notified by phone or in person and shall document the initial notification in writing within two working days of the findings of any such animal(s). Notification shall include the date, time, location and circumstances of the incident.
- BIO-15 Prior to commencement of construction on any phase of work, work areas should be clearly marked with fencing, stakes with rope or cord, or other means of delineating the work area boundaries.
- BIO-16 All personnel entering the project site should attend a worker orientation program. The worker orientation program will present measures required to avoid, minimize, and mitigate impacts to biological resources and will include, at a minimum, the following: federal and state endangered species acts; biological survey results for the current construction area; life history information for the species of concern; biological resource avoidance, minimization,

and mitigation requirements; consequences for failure to successfully implement requirements; and procedures to be followed if dead or injured wildlife are located during project activities. Upon completion of the orientation, employees should sign a form stating that they attended the program and understand all biological resource mitigation measures and receive a hard hat sticker or other means of identifying that they have attended the worker orientation. Forms verifying worker attendance should be filed at the applicant's office and be accessible to county, USFWS and CDFW staff. No untrained personnel will be allowed to work onsite with the exception of delivery trucks that are only onsite for one day or less, and are under the supervision of a trained employee.

### CULTURAL RESOURCES MITIGATION MEASURES

- CUL-1 An unexpected discovery of cultural resources during any phase of the project shall result in an immediate work stoppage in the vicinity of the find until the resources can be evaluated by a professional archaeologist. If the resource is deemed to be an "important" cultural resource, impacts will be mitigated by avoidance, where feasible.
- CUL-2 Contractor shall provide a Cultural Resource Sensitivity Training Course to all personnel prior to any ground-disturbing activities associated with this project.

# HYDROLOGY AND WATER QUALITY MITIGATION MEASURES

HYD-1 Vaughn Water Company regularly monitors the groundwater levels in their wells in order to ensure the wells are not excessively lowering groundwater levels in the area. Well monitoring will continue in nearby wells during construction activity.

# NOISE IMPACT MITIGATION MEASURES

- NOI-1 Noise levels will be increased on a temporary basis during construction activities. Installation of sound barrier walls will be installed around the south, west, and east sides of the well site during well drilling activities to reduce noise and light to nearby residents.
- NOI-2 The temporary noise impacts attributed to construction will be mitigated for all construction, with the exception of the well

drilling activities, by limiting the hours of construction on-site to weekdays, Monday thru Friday, from 7 am to 5 pm.

NOI-3 The well will be equipped with an insulated motor enclosure to mitigate motor noise and the electrical and ozone treatment equipment will be located within an insulated metal building. The booster pumps are equipped with variable speed drives to help run at optimum efficiency and shorter, quieter run times. The well site will be secured with an 8-ft masonry wall, which is 2-ft taller than normal, to help reduce the overall noise impact.

# TRANSPORTATION/TRAFFIC

- TRA-1 During construction there will be an increase in traffic as a result of material deliveries and construction crews, however construction signage will be provided to alert people around the construction activity as needed.
- TRA-2 The Company will obtain all necessary encroachment permits for any proposed work within the County road right of way.

# VIII. <u>INITIAL STUDY</u>

A. Project Title

Meadow Creek Well Water Supply and Treatment Facility

B. Lead Agency Name and Contact Information

North of the River Recreation and Park District 3825 Riverlakes Drive Bakersfield, CA 93312 Contact Person: Steph Thisius-Sanders, Planning & Construction Director Phone: (661) 392-2000

C. Project Location

The project is located on APN 526-010-14 near the intersection of Meadow Creek Street and Polo Drive in Section 18, T29S, R27E, M.D.B.&M. in the City of Bakersfield. See Figure 1 herein.

D. General Plan Designation

The General Plan Designation is 1.2 which refers to a land use designation of "Incorporated Cities".

E. Zoning

The zoning is listed as Open Space (OS) which was in consideration of the park.

F. Description of Project

See Section IV above.

G. Surrounding Land Uses and Setting

The surrounding land uses include Open Space (OS) to the north and east of the well site for the park and Single-Family Residential (R-1) to the south and west.

- H. Public Agency Approvals
  - California State Water Resources Control Board
  - San Joaquin Valley Air Pollution Control District
  - Kern County Environmental Health Department
  - Kern County Permits Department
- I. Environmental Factors Potentially Affected

The environmental factors checked below would be potentially affected by this project involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages:

| X | Aesthetics                     |   | Agriculture and Forestry<br>Resources | ĸ | Air Quality                                       |
|---|--------------------------------|---|---------------------------------------|---|---------------------------------------------------|
| K | Biological Resources           | X | Cultural Resources                    |   | Energy                                            |
|   | Geology / Soils                |   | Greenhouse Gas Emissions              |   | Hazards <mark>&amp;</mark> Hazardous<br>Materials |
| X | Hydrology / Water<br>Quality   |   | Land Use / Planning                   |   | Mineral Resources                                 |
| X | Noise                          |   | Population / Housing                  |   | Public Services                                   |
|   | Recreation                     | x | Transportation                        |   | Tribal Cultural Resources                         |
|   | Utilities / Service<br>Systems |   | Wildfire                              | X | Mandatory Findings of<br>Significance             |

### J. Determination

On the basis of this initial evaluation:

| 1 |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
| Î |  |  |  |

I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.

X I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect (a) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and (b) has been addressed by mitigation measures based on the earlier analysis as described on the attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

INITIAL STUDY PREPARED BY: Dee Jaspar & Associates, Inc, Company Engineer, 2730 Unicorn Road, Bldg. A, Bakersfield, CA 93308, (661) 393-4796.

North of the River Recreation and Park District 3825 Riverlakes Drive Bakersfield, CA 93312

By: North of the River Recreation and Park District

10.18.2023

Date:

# **EVALUATION OF ENVIRONMENTAL IMPACTS**

1. A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a Lead Agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project specific screening analysis).

2. All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.

3. Once the Lead Agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.

4. "Negative Declaration: Less than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less-Than-Significant Impact". The Lead Agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less-than-significant level (mitigation measures from "Earlier Analyses", as described in (5) below may be cross-referenced).

5. Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:

- a. Earlier Analysis Used. Identify and state where they are available for review.
- b. Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.

c. Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated", describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.

6. Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.

7. Supporting Information Sources: A source list should be attached, and other sources used, or individuals contacted should be cited in the discussion.

8. This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.

- 9. The explanation of each issue should identify:
  - a. the significance criteria or threshold, if any, used to evaluate each question; and
  - b. the mitigation measure identified, if any, to reduce the impact to less than significance.

# i. **AESTHETICS**:

| a) Have a substantial adverse effect on a scenic vista?     | No Impact             |
|-------------------------------------------------------------|-----------------------|
| b) Substantially damage scenic resources, including, but    | No Impact             |
| not limited to, trees, rock outcroppings, and historic      |                       |
| buildings within a state scenic highway?                    |                       |
| c) In non-urbanized areas, substantially degrade the        | No Impact             |
| existing visual character or quality of public views of the |                       |
| site and its surroundings? (Public views are those that     |                       |
| are experienced from a publicly accessible vantage          |                       |
| point). If the project is in an urbanized area, would the   |                       |
| project conflict with applicable zoning and other           |                       |
| regulations governing scenic quality?                       |                       |
| d) Create a new source of substantial light or glare which  | Less Than Significant |
| would adversely affect day or nighttime views in the        | with Mitigation       |
| area?                                                       | Incorporated          |

a. This facility will be constructed near the intersection of Polo Drive and Meadow Creek Street. The well site is currently irrigated lawn as part of a community park and is surrounded by single-family residential, a park, and a school. There are no scenic vistas in the area.



Figure 1: Site Location (See Exhibit A for Full Size Version)

The well site will be developed with an 8-ft tall masonry block wall around the perimeter of the site to screen the well, pump, and piping facilities from the neighborhood and park. In addition, the site will be painted a neutral color (tan) and site landscaping installed inside the perimeter of the block wall to make the site aesthetically pleasing and blend in with the park and neighborhood.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. The project does not include the removal of any trees determined to be scenic or of scenic value, the destruction of rock outcroppings, or degradation of any historic buildings. The project is not near a scenic highway. All County roads and other land disturbed during installation of the new water mains will be returned to their existing conditions as part of this project.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

c. The project site is within a residential area, a park and an elementary school. It will be located in the southwest corner of the park in an area that is not utilized. Therefore, the project will not substantially degrade the existing visual character or quality of public views. All access roads and other lands will be returned to their existing conditions as part of this project. The well site will have an 8-ft tall masonry block wall around the perimeter of the site and landscape trees will be planted along the inside of the block wall to shield the on-site well and treatment equipment from neighboring properties.

# *Mitigation Measure(s)*

No mitigation required.

Level of Significance

There will be no impact.

d. No new source of substantial light will be created as part of the project. The above ground buildings and other structures at the new municipal well facility will be painted to eliminate any substantial glare. Some site lighting will be provided at the new well site; however, the freestanding lighting at the well site will be less than 20-ft tall and the light fixtures will be shielded and directed downward to comply with the Kern County "Dark Skies Ordinance".

### *Mitigation Measure(s)*

- AES-1 Lighting will be less than 20-ft tall and the light fixtures shielded and directed downward to comply with the Kern County "Dark Skies Ordinance".
- AES-2 The site will be painted a neutral color (tan), be screened with an 8-ft tall masonry block wall, and have landscaping installed around the perimeter of the site to blend in with the park.

# Level of Significance

Impacts will be less than significant.

# ii. AGRICULTURE RESOURCES:

| Question                                                                                                                                                                                                                                                                                                       | <b>CEQA</b> Determination |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Convert Prime Farmland, Unique Farmland, or Farmland<br>of Statewide Importance (Farmland), as shown on the<br>maps prepared pursuant to the Farmland Mapping and<br>Monitoring Program of the California Resources Agency,<br>to non-agricultural use?                                                     | No Impact                 |
| b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                                                           | No Impact                 |
| <ul> <li>c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?</li> </ul> | No Impact                 |
| d) Result in the loss of forest land or conversion of forest land to non-forest use?                                                                                                                                                                                                                           | No Impact                 |
| <ul> <li>e) Involve other changes in the existing environment which,<br/>due to their location or nature, could result in conversion<br/>of Farmland, to non-agricultural use or conversion of<br/>forest land to non-forest use?</li> </ul>                                                                   | No Impact                 |

a. The project site is located in a residential area and within the limits of an existing community park. Referring to the City of Bakersfield Land Zoning, the area is classified as Zone OS (open space). This land designation allows for water facilities under Permitted Uses (Ch. 19.44.020(C)). This project will not convert farmland to non-agricultural use.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance



b. The project site is primarily located within existing urban residential developments. It is not under the Williamson Act nor will it conflict with existing zoning.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

c. The project site will not conflict with existing zoning or cause rezoning of forest land. There are no forest lands or timberlands identified on the project site.

Mitigation Measure(s)

No mitigation required.

Level of Significance

d. The project site will not result in the loss of forest land or convert forest land to non-forest use.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

e. The project does not involve other changes to the existing environment that could result in conversion of farmland to nonagricultural use or forest land to non-forest use.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### iii. AIR QUALITY:

| Question                                                                                                                                                                                                                           | <b>CEQA</b> Determination                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| a) Conflict with or obstruct implementation of the                                                                                                                                                                                 | No Impact                                                |
| applicable air quality plan?                                                                                                                                                                                                       |                                                          |
| <ul> <li>b) Result in a cumulatively considerable net increase of<br/>any criteria pollutant for which the project region is<br/>non- attainment under an applicable federal or state<br/>ambient air quality standard?</li> </ul> | Less Than Significant<br>with Mitigation<br>Incorporated |
| c) Expose sensitive receptors to substantial pollutant concentrations?                                                                                                                                                             | Less Than Significant<br>with Mitigation<br>Incorporated |
| <ul> <li>d) Result in other emissions (such as those leading to<br/>odors) adversely affecting a substantial number of<br/>people?</li> </ul>                                                                                      | Less Than Significant<br>with Mitigation<br>Incorporated |

a. The project will not involve any conflicts or issues with the applicable air quality plan. The project is within the San Joaquin Valley Air Basin (SJVAB) and under the jurisdiction of the San Joaquin Valley Air Pollution Control District (SJVAPCD). The adopted Air Quality Attainment Plans for the San Joaquin Valley Air Basin set forth comprehensive programs that will lead the SJVAB into compliance with federal and State ambient air quality standards.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

b. Using project type and size categories, the SJVAPCD has prequantified emissions and determined a size below which it is reasonable to conclude that a project would not exceed applicable thresholds of significance for criteria pollutants. Short-term criteria pollutant emissions were calculated based on the anticipated construction timelines, equipment needed, and default emission factors for said equipment. The construction period is estimated to span approximately 18 to 24 months. Construction emission estimates also included PM<sub>10</sub> reduction measures in compliance with SJVAPCD Regulation VIII requirements, including exposed area watering three times a day and vehicle speed reduction to less than 15 miles per hour. Construction related emissions over the

anticipated construction period are estimated to not exceed SJVAPCD construction emissions thresholds and would result in a less-than-significant impact.

The construction phase of the project was evaluated for the construction emissions using the California Emissions Estimator Model. The combined annual emissions report is attached as Exhibit C. Construction emission estimates were generated in lbs/day for the duration of the project. These included nitrogen oxides, carbon monoxide, sulfur dioxide, carbon dioxide, PM 10, and PM 2.5 and many others. The thresholds and calculated emissions are outlined below:

| Carbon<br>SO <sub>2</sub> or<br>PM <sub>10</sub> T     | 1 hr Threshold (VOC's or NO <sub>x</sub> )<br>n Monoxide Threshold<br>NO <sub>2</sub> Threshold<br>Threshold<br>Threshold                 | = 25 tons/yr<br>= 100 tons/yr<br>= 100 tons/yr<br>= 100 tons/yr<br>= 100 tons/yr |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| CO                                                     | Estimate = $0.66 \text{ tons/yr}$                                                                                                         | < 100 tons/yr                                                                    |
| NO <sub>x</sub><br>SO <sub>2</sub>                     | Estimate = $0.52 \text{ tons/yr}$<br><u>Estimate = <math>&lt;0.005 \text{ tons/yr}</math></u><br>Total Estimate = $0.525 \text{ tons/yr}$ | < 100 tons/yr                                                                    |
| PM <sub>10</sub> D                                     | Estimate = 0.02 tons/yr<br>Estimate = 0.01 tons/yr<br>Estimate = 0.03 tons/yr<br>Total Estimate = 0.06 tons/yr                            | < 100 tons/yr                                                                    |
| PM <sub>2.5</sub> E                                    | E Estimate = 0.02 tons/yr<br>E Estimate = <0.005 tons/yr<br>Estimate = 0.02 tons/yr<br>Total Estimate = 0.045 tons/yr                     | < 100 tons/yr                                                                    |
| TOG<br>ROG<br>N <sub>2</sub> O<br>CH <sub>4</sub><br>R |                                                                                                                                           |                                                                                  |
| CO <sub>2</sub> E<br>BCO <sub>2</sub>                  | Estimate = 112.0 tons/yr<br>Estimate = 112.0 tons/yr<br>Estimate = N/A tons/yr<br>2 Estimate = 112.0 tons/yr                              |                                                                                  |

#### Footnotes:

- 1- Annual emission estimates based on an approximate 24-month construction period.
- 2- Project results in a significant impact if activities contribute to an exceedance of State or Federal ambient CO standards.
- 3- The District does not have a significance threshold for TOG.
- 4- Complying with APCD Regulations for controlling fugitive dust emissions during construction reduces potential impacts to less than significant.

### Mitigation Measure(s)

- AQ-1 Water will be applied to the project site during construction grading, trenching, and backfilling operations to control dust and keep the project area clean.
- AQ-2 The contract documents will require the Contractor to obtain and comply with a San Joaquin Valley Air Pollution Control District Dust Control Plan and to permit the ozone treatment and destruct system.

### Level of Significance

Impacts will be less than significant.

c. Sensitive receptors are defined as areas where young children, chronically ill individuals, the elderly, or people who are more sensitive than the general population. The following locations are where several sensitive receptors are likely to reside and be affected by substantial pollutant concentrations: schools, hospitals, nursing homes, and daycare centers.

The project site property abuts Almondale Elementary School. Also, Ask Academy Family & Education Center In-Home Child Care is located within the residential neighborhood housing and is approximately 0.2 miles from the project site. Furthermore, Jens Family Daycare & Preschool is located within a residential neighborhood and is approximately 0.4 miles from the project site. There are no hospitals or other sensitive receptors to substantial pollutant concentrations with respect to air quality in the area.

The project will not involve emissions that would expose sensitive receptors to toxic air contaminants such as asbestos or lead. During construction, equipment will be kept from idling without being utilized and dust will be controlled. There are no emissions into the air as part of the facility operation as there will be no gas or diesel driven equipment as part of the project once construction is complete.

# Mitigation Measure(s)

- AQ-1 Water will be applied to the project site during construction grading, trenching, and backfilling operations to control dust and keep the project area clean.
- AQ-2 The contract documents will require the Contractor to obtain and comply with a San Joaquin Valley Air Pollution Control District Dust Control Plan and to permit the ozone treatment and destruct system.

### Level of Significance

Impacts will be less than significant.

d. The project will not create objectionable odors that would affect a substantial number of people. The project is a water well facility. During construction, dust from the area will be controlled by watering.

### Mitigation Measure(s)

- AQ-1 Water will be applied to the project site during construction grading, trenching, and backfilling operations to control dust and keep the project area clean.
- AQ-2 The contract documents will require the Contractor to obtain and comply with a San Joaquin Valley Air Pollution Control District Dust Control Plan and to permit the ozone treatment and destruct system.

# Level of Significance

Impacts will be less than significant.

### iv. **BIOLOGICAL RESOURCES:**

| Question                                                                                                                                                                                                                                                           | <b>CEQA</b> Determination                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| a) Have a substantial adverse effect, either directly or<br>through habitat modifications, on any species<br>identified as a candidate, sensitive, or special status                                                                                               | Less Than Significant<br>with Mitigation<br>Incorporated |
| species in local or regional plans, policies, or<br>regulations, or by the California Department of Fish<br>and Wildlife, U.S. Fish and Wildlife Service, or NOAA<br>Fisheries?                                                                                    | incorporated                                             |
| b) Have a substantial adverse effect on any riparian<br>habitat or other sensitive natural community identified<br>in local or regional plans, policies, regulations or by<br>the California Department of Fish and Wildlife or U.S.<br>Fish and Wildlife Service? | No Impact                                                |
| c) Have a substantial adverse effect on state or<br>federally protected wetlands (including, but not<br>limited to, marsh, vernal pool, coastal, etc.) through<br>direct removal, filling, hydrological interruption, or<br>other means?                           | No Impact                                                |
| d) Interfere substantially with the movement of any<br>native resident or migratory fish or wildlife species or<br>with established native resident or migratory wildlife<br>corridors, or impede the use of native wildlife nursery<br>sites?                     | No Impact                                                |
| e) Conflict with any local policies or ordinances<br>protecting biological resources, such as a tree<br>preservation policy or ordinance?                                                                                                                          | No Impact                                                |
| <ul> <li>f) Conflict with the provisions of an adopted Habitat<br/>Conservation Plan, Natural Community Conservation<br/>Plan, or other approved local, regional, or state<br/>habitat conservation plan?</li> </ul>                                               | No Impact                                                |

a. The project area is located within an existing residential development and open space land designation in the City of Bakersfield. The project will not adversely affect known species in local or regional plans, policies, regulations, or other. Pruett Biological Resource Consulting, Inc. performed a biological survey of the project area and their biological report is attached as Exhibit D. They found that the project will not have an impact on species. The biological report indicated no sensitive species nor were there signs observed during the field investigation. Per the report recommendations, preconstruction surveys will be performed prior to construction to ensure avoidance of Nesting Birds.

Mitigation measures were recommended as general measures to adopt the represent best management practices:

### *Mitigation Measure(s)*

- BIO-1 To protect nesting birds (covered by the MBTA) and all raptors, the following measures should be implemented:
  - Pre-construction nesting bird surveys for the well area and within a 250-foot (76- meter) buffer around the perimeter should be conducted no more than one week prior to the commencement of ground disturbing activities, for project activities occurring between February 1 and August 31. If nesting birds are present, no new construction or new ground disturbance should occur within an appropriate avoidance area for the specific species until young have fledged, unless otherwise approved and monitored by a qualified onsite biologist. Avoidance zones should be implemented as follows: 1) ground or low shrub nesting non-raptors-300 feet (91 meters); and 2) listed and fully protected raptors- 2,660 feet (811 meters); non-sensitive raptors-500 feet (152 meters). Once young have fledged, avoidance zones can be removed.
  - Activities on existing roads shall not be restricted as a result of implementation of this measure, unless those activities may result in direct impacts to nesting birds.
  - All determinations regarding protection of nesting birds included in this measure should be made by a qualified biologist.
- BIO-2 Traffic restraints and signs should be established to minimize temporary disturbances during construction. All construction traffic should be restricted to designated access roads and routes, project site, storage areas, and staging and parking areas. Off-road traffic outside designated project boundaries will be prohibited. A 15 mile-per-hour (32 kilometer-per-hour) speed limit should be observed in all project construction areas, except as otherwise posted on county roads and state and federal

highways.

- BIO-3 All equipment storage and parking during construction activities should be confined to the designated construction area or to previously disturbed off site areas that are not habitat for listed species.
- BIO-4 All project construction activities involving excavation or surface disturbance should be limited to daylight hours with the exception of well drilling activities.
- BIO-5 Trenches should be inspected for entrapped wildlife each morning, prior to the onset of construction. Before such holes or trenches are filled, they should be thoroughly inspected for entrapped animals. Any animals so discovered shall be allowed to escape voluntarily, without harassment, before construction activities resume, or removed from the trench or hole by a qualified biologist and allowed to escape unimpeded.
- BIO-6 All construction pipes, poles, culverts, hoses or similar structures stored at the construction site for one or more overnight periods should be capped or the ends covered in a way that prevents wildlife entrapment. Unburied pipes laid in trenches overnight should be capped. If a kit fox or other listed species is discovered inside a pipe, that section of pipe will not be moved until the animal leaves on its own, or the USFWS and the CDFW have been consulted.
- BIO-7 All food-related trash items such as wrappers, cans, bottles and food scraps generated by project activities shall be disposed of in closed containers and removed at least once each week from the site. Deliberate feeding of wildlife is prohibited.
- BIO-8 To prevent harassment of special-status species, construction personnel should not be allowed to have firearms or pets on the project site.
- BIO-9 All equipment and work-related materials shall be contained in closed containers either in the work area or on vehicles. Loose items (e.g., rags, hose, etc.) should be stored within closed containers or enclosed in vehicles when on the work site.

- BIO-10All liquids should be in closed, covered containers. Any spills of hazardous liquids should not be left unattended until cleanup has been completed.
- BIO-11Use of rodenticides and herbicides on the project site should be prohibited unless approved by the USFWS and the CDFW. This is necessary to prevent primary or secondary poisoning of special-status species using adjacent habitats, and to avoid the depletion of prey upon which they depend. Label restrictions and other restrictions imposed by the U.S. Environmental Protection Agency (EPA), the California Department of Food and Agricultural (CDFA), and other state and federal legislation shall be implemented. If rodent control must be conducted, zinc phosphide shall be used because of its proven lower risk to kit foxes.
- BIO-12Any employee who inadvertently kills or injures a listed species, or who finds any such animal dead, injured, or entrapped, shall be required to report the incident immediately to a designated site representative (e.g., foreman, project manager, environmental inspector, etc.), except animals killed on state and county roads when such mortality is not associated with project traffic. In the case of entrapped animals that are listed species, escape ramps or structures shall be installed immediately, if possible, to allow the subject animal(s) to escape unimpeded.
- BIO-13In the case of injured special-status wildlife, the CDFW shall be notified immediately. During business hours, Monday through Friday, the phone number is (559) 243-4017. For non-business hours, report to (800) 952-5400. Notification shall include the date, time, location, and circumstances of the incident. Instructions provided by the CDFW for the care of the injured animal shall be followed by the contractor onsite.
- BIO-14In the case of dead animal(s) that are listed as threatened or endangered, the USFWS and the CDFW shall be immediately (within 24 hours) notified by phone or in

person and shall document the initial notification in writing within two working days of the findings of any such animal(s). Notification shall include the date, time, location and circumstances of the incident.

- BIO-15Prior to commencement of construction on any phase of work, work areas should be clearly marked with fencing, stakes with rope or cord, or other means of delineating the work area boundaries.
- BIO-16All personnel entering the project site should attend a worker orientation program. The worker orientation program will present measures required to avoid, minimize, and mitigate impacts to biological resources and will include, at a minimum, the following: federal and state endangered species acts; biological survey results for the current construction area; life history information for the species of concern; biological resource avoidance, minimization, and mitigation requirements; consequences for failure to successfully implement requirements; and procedures to be followed if dead or injured wildlife are located during project activities. Upon completion of the orientation, employees should sign a form stating that they attended the program and understand all biological resource mitigation measures and receive a hard hat sticker or other means of identifying that they have attended the worker orientation. Forms verifying worker attendance should be filed at the applicant's office and be accessible to county, USFWS and CDFW staff. No untrained personnel will be allowed to work onsite with the exception of delivery trucks that are only onsite for one day or less, and are under the supervision of a trained employee.

# Level of Significance

Impacts will be less than significant.

b. The project does not plan disturbance to any regulated, sensitive habitat types such as wetlands or riparian. The project is not located within a river or an area that encompasses a river or potential floodplain and does not contain nor is near any riparian habitat.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

c. There are no federally protected wetlands or coastal areas in the vicinity of the project. The project site does not contain any water features that would meet the criteria for either federal jurisdiction or State regulatory authority. The biological survey did not identify any other non-wetland features within the biological survey area that would meet the criteria for either federal or State jurisdiction.

A search was also conducted online using the US Fish and Wildlife Service Wetlands Mapper and a map of the project area has been attached hereto as Exhibit I. No current wetlands are located within the project areas.

| U.S. Fish and Wildlife Service<br>National Wetlands Inventory    | VWC New Municipal Water Well Site                                                                                                                                                                                                                          |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                                                                                                                                                                                                            |
|                                                                  |                                                                                                                                                                                                                                                            |
| 0 0.1 02 0.4 m<br>0 0.15 0.3 0.6 km                              |                                                                                                                                                                                                                                                            |
| December 2, 2022 Wetlands Freshwater Emergent Wetland            | This map is for general reference only. The US Fish and Will<br>Service is not responsible for the accuracy or currentness of<br>base data show non this map. All wetlands related data shou<br>be used in accordance with the layer metadata found on the |
| Estuarine and Marine Deepwater Freshwater Forested/Shrub Wetland | Wetlands Mapper web site.                                                                                                                                                                                                                                  |
| Estuarine and Marine Wetland Freshwater Pond                     | Riverine                                                                                                                                                                                                                                                   |
|                                                                  | National Wetlands Inventory (<br>This page was produced by the NWI ma                                                                                                                                                                                      |

Figure 3: Wetlands Map (See Exhibit I for Full Size Version)

### Mitigation Measure(s)

No mitigation required.

### Level of Significance

There will be no impact.

d. The project area is located within an existing urban residential development in the City of Bakersfield. The project will not interfere with migratory corridors or habitat linkages between species' populations.

The project will not substantially affect migrating birds or other wildlife. The project will not restrict, eliminate, or significantly alter a wildlife movement corridor, wildlife core area, or Essential Habitat Connectivity area, either during construction or after the project has been constructed. Project construction will not substantially interfere with wildlife movements or reduce breeding opportunities.

The proposed project will not interfere with the movement of any native resident or migratory fish or wildlife species or with an established native resident or migratory wildlife corridors or impede the use of native wildlife nursery sites. Therefore, there would be no impacts to wildlife movements, would not affect movement corridors, or impede a nursery site.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

e. The project will not conflict with any local policies or ordinances protecting biological resources. There are no adopted local policies or ordinances protecting biological resources that would apply to the project.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

f. The proposed project area is located within the City of Bakersfield service area and is Zoned OS (open space). Under Permitted Uses (Ch. 19.44.020(C)) water systems are permitted. As proposed, the project will not conflict with any existing habitat conservation plans.

Mitigation Measure(s)

No mitigation required.

Level of Significance

### v. CULTURAL RESOURCES:

| Question                                               | <b>CEQA</b> Determination |
|--------------------------------------------------------|---------------------------|
| a) Cause a substantial adverse change in the           | Less Than Significant     |
| significance of a historical resource pursuant to in   | with Mitigation           |
| §15064.5?                                              | Incorporated              |
| b) Cause a substantial adverse change in the           | Less Than Significant     |
| significance of an archaeological resource pursuant    | with Mitigation           |
| to §15064.5?                                           | Incorporated              |
| c) Disturb any human remains, including those interred | Less Than Significant     |
| outside of dedicated cemeteries?                       | with Mitigation           |
|                                                        | Incorporated              |

a. The proposed project is located within an Open Space land designation within a residential subdivision. It will not cause a substantial change in the significance of a historical resource. A cultural resource assessment was performed by BCRConsulting. See the assessment report attached as Exhibit E. The assessment confirmed that there are no recorded cultural resources within the proposed project areas or within a one-half mile radius of the project areas. A native American cultural resource records search was performed by the Native American Heritage Commission on January 19, 2023, see the NAHC Records Search attached as Exhibit F. The records search confirmed that there are no recorded Native American cultural resources within the proposed project areas or within a one-half mile radius of the project area.

Although the project is within an existing disturbed site, unknown historical resources may be discovered during ground-disturbing activities. In order to account for unanticipated discoveries and the potential to impact previously undocumented or unknown resources, the following mitigation measures are recommended.

## *Mitigation Measure(s)*

- CUL-1 An unexpected discovery of cultural resources during any phase of the project shall result in an immediate work stoppage in the vicinity of the find until the resources can be evaluated by a professional archaeologist. If the resource is deemed to be an "important" cultural resource, impacts will be mitigated by avoidance, where feasible.
- CUL-2 Contractor shall provide a Cultural Resource Sensitivity Training Course to all personnel prior to any ground-disturbing activities associated with this project.

# Level of Significance

Impacts will be less than significant.

b. The project area is located within an urban residential neighborhood and a community park in the City of Bakersfield. According to the National and California Registers of Historic Resources, there are no historic or prehistoric resources in the vicinity of the project and the project will therefore not have any substantial adverse change to any archaeological resources.

Although unlikely, there is a chance that trenching and grading activities could unearth previously unknown archaeological resources. Therefore, the following mitigation measures are recommended.

## Mitigation Measure(s)

- CUL-1 An unexpected discovery of cultural resources during any phase of the project shall result in an immediate work stoppage in the vicinity of the find until the resources can be evaluated by a professional archaeologist. If the resource is deemed to be an "important" cultural resource, impacts will be mitigated by avoidance, where feasible.
- CUL-2 Contractor shall provide a Cultural Resource Sensitivity Training Course to all personnel prior to any ground-disturbing activities associated with this project.

## Level of Significance

Impacts will be less than significant.

c. No known burials are located within the project areas. It will not disturb any human remains. Although unlikely, subsurface construction activities, such as trenching and grading, associated with the proposed project could potentially disturb previously undiscovered human burial sites. Therefore, the following mitigation measures are recommended.

## Mitigation Measure(s)

CUL-1 An unexpected discovery of cultural resources during any phase of the project shall result in an immediate work stoppage in the vicinity of the find until the resources can be evaluated by a professional archaeologist. If the resource is deemed to be an

"important" cultural resource, impacts will be mitigated by avoidance, where feasible.

CUL-2 Contractor shall provide a Cultural Resource Sensitivity Training Course to all personnel prior to any ground-disturbing activities associated with this project.

Level of Significance

Impacts will be less than significant.

## vi. ENERGY:

| Question                                                  | <b>CEQA</b> Determination |
|-----------------------------------------------------------|---------------------------|
| a) Result in potentially significant environmental impact | No Impact                 |
| due to wasteful, inefficient, or unnecessary              |                           |
| consumption of energy resources, during project           |                           |
| construction or operation?                                |                           |
| b) Conflict with or obstruct a state or local plan for    | No Impact                 |
| renewable energy or energy efficiency?                    |                           |

Energy demand during the construction phase will result from the transportation of materials, construction equipment, and construction worker vehicle trips. Construction equipment can include tractors, loaded trucks, forklifts, excavators, backhoes, generators, cranes, compactors, and air compressors. The project will comply with the SJVAPCD requirements regarding the use of fuel-efficient vehicles and equipment to the extent feasible. The project will not use natural gas during the construction phase. Compliance with standard regional and local regulations will minimize fuel consumption during project construction.

The project treatment building and pump enclosure building will comply with current applicable building code requirements, development standards, and energy efficiency requirements. Equipment used at the facility will be designed to be energy efficient and will not result in unnecessary energy use.

The project will not result in significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy during project construction or operation. During construction, idling times will be limited to 5 minutes or less to reduce wasted energy.

During operation, the well site motors will utilize variable speed drives to improve efficiency. The site is equipped with a tank which will allow the well to start less often and be more efficient. The electrical building will be insulated with R-19 insulation, insulated doors, and an insulated roll up door.

### Mitigation Measure(s)

No mitigation required.

### Level of Significance

b. The project does not conflict with or obstruct state or local renewable energy or energy efficiency plans. The site is in compliance with California Building Energy Efficiency Standards.

Strategies being implemented to be energy efficient include diesel antiidling measures, light-duty vehicle technology, usage of alternative fuels such as biodiesel blends, and heavy-duty vehicle design measures to reduce energy consumption.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

## vii. GEOLOGY AND SOILS:

| Question                                                                                                                                                                                                                                                                                                                       | <b>CEQA</b> Determination       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| a) Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:                                                                                                                                                                                                 | No Impact                       |
| <ul> <li>i) Rupture of a known earthquake fault, as delineated<br/>on the most recent Alquist-Priolo Earthquake Fault<br/>Zoning Map issued by the State Geologist for the<br/>area or based on other substantial evidence of a<br/>known fault? Refer to Division of Mines and<br/>Geology Special Publication 42.</li> </ul> |                                 |
| ii) Strong seismic ground shaking?                                                                                                                                                                                                                                                                                             | Less Than Significant<br>Impact |
| iii) Seismic-related ground failure, including<br>liquefaction?                                                                                                                                                                                                                                                                | No Impact                       |
| iv) Landslides?                                                                                                                                                                                                                                                                                                                | No Impact                       |
| b) Result in substantial soil erosion or the loss of topsoil?                                                                                                                                                                                                                                                                  | No Impact                       |
| c) Be located on a geologic unit or soil that is unstable,<br>or that would become unstable as a result of the<br>project, and potentially result in on- or off-site<br>landslide, lateral spreading, subsidence, liquefaction<br>or collapse?                                                                                 | No Impact                       |
| d) Be located on expansive soil, as defined in Table 18-<br>1-B of the Uniform Building Code (1994), creating<br>substantial direct or indirect risks to life or property?                                                                                                                                                     | No Impact                       |
| e) Have soils incapable of adequately supporting the<br>use of septic tanks or alternative waste water<br>disposal systems where sewers are not available for<br>the disposal of waste water?                                                                                                                                  | No Impact                       |
| f) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?                                                                                                                                                                                                                        | No Impact                       |

- a. The proposed project involves drilling and equipping a new municipal water well facility and connecting it to the existing VWC distribution system. The project will not adversely affect the people in the area.
  - i) The risks of injury in the event of an earthquake for this project are less than significant. The project site is not located in an Alquist-Priolo Earthquake Fault Zone, as defined by Special Publication 42 (revised 2007) published by the California Geologic Survey (CGS). A record search was made on the Department of Conservations CGS EQ

Zapp interactive web map. The project site is not located within a fault zone.

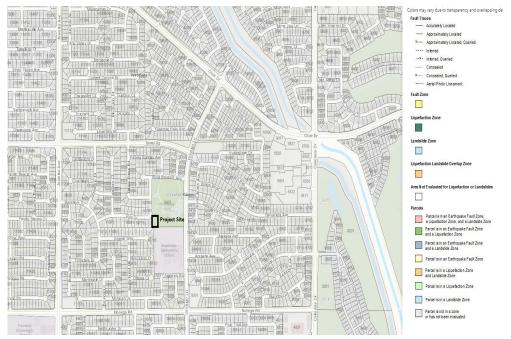



Figure 4: Fault Zone Map

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

 ii) The project is in a seismically active region, however it is not at risk for high-magnitude earthquake destruction. The project area is in the middle of the San Joaquin Valley which experiences moderate to severe ground shaking. The project areas could potentially experience strong seismic ground shaking during the lifespan of the project; however, the risk of loss, injury, or death as a result of ground shaking is less than significant as the project primarily involves the installation of underground piping and a water well.

Water well construction is under the authority of the California Department of Water Resources. The wells will be constructed in accordance with the standards as outlined in Chapter II Section 2, including well location siting to limit contamination and pollution from off-site sources, the use of appropriate well casing, the placement and components of seals, the sizing of the well hole and the types of casing materials to use based on soil types, etc. The project will

adhere to the applicable standards as outlined by the State during the construction of the well.

Kern County has also adopted a well ordinance that is under the jurisdiction of the County Public Health Department. The project will adhere to the applicable Kern County regulations.

The only above ground buildings that will be built will be a well enclosure building and a metal treatment building. These above ground structures are designed to withstand seismic ground shaking in accordance with CBC 2022. A water storage tank and booster pumps will be located within the site as well. They are also designed to withstand seismic ground shaking in accordance with CBC 2022. Based on the above noted information the risks of injury in the event of strong seismic ground shaking is less than significant.

Mitigation Measure(s)

No mitigation required.

Level of Significance

Impacts will be less than significant.

iii) The depth to groundwater in this area is greater than 300-ft below ground surface. Since the depth to groundwater at the project site is much greater than 50-feet, there is a negligible risk of liquefaction occurring at the site during a seismic event. The risks of injury in the event of seismic related ground failure, including liquefaction is less than significant.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

iv) The project areas are flat lying areas and landslides are not considered a concern. There is no potential for rock falls or landslides to impact the project in the event of a major earthquake, as the area has no dramatic elevation changes.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

b. The project area is primarily located within an existing residential area and open space (park) and is relatively flat. Construction activities for the project may disturb minimal amounts of soil during construction and would expose these disturbed areas to erosion by wind and water. However, since the project is anticipated to disturb less than one acre of land, the project site is not subject to the National Pollutant Discharge Elimination System (NPDES) Program requirements. As such, it will not have to develop a Stormwater Pollution Prevention Plan (SWPPP). However, the project will be required to contain all stormwater runoff on-site and will implement various types of Best Management Practices (BMP's) to prevent erosion and sedimentation from occurring during construction.

Typical BMP's intend to control erosion and include sandbags, silt fencing, street sweeping, etc. The project is not expected to result in substantial soil erosion or the loss of topsoil with the implementation of the BMP's. Overall, the project will not result in conditions where substantial surface soils would be exposed to wind and water erosion.

Mitigation Measure(s)

No mitigation required.

## Level of Significance

There will be no impact.

c. The geologic conditions are stable. The project will not result in unstable geologic conditions or other unsatisfactory soil collapse. Based on the existing grade of the surrounding topography, landslides will not be an issue, and neither will lateral spreading, subsidence, liquefaction or collapse. Attached is a copy of a Soil Survey Map provided by the National Cooperative Soil Survey in Exhibit G. The soil classification is a Kimberlina Fine Sandy Loam with 0 to 2% slopes.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

d. Soils in the area are not expansive based on the material being a Kimberlina Fine Sandy Loam absent of clays. Any unsuitable soil encountered during site grading will be replaced with suitable engineered fill.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

e. Septic tanks and seepage pits will not be a part of this project. The project will not include any requirements for the disposal of waste on-site.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

f. Paleontological resources or unique geologic features will not be directly or indirectly destroyed as a result of this project.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### viii. GREENHOUSE GAS EMISSIONS:

| Question                                                  | <b>CEQA</b> Determination |
|-----------------------------------------------------------|---------------------------|
| a) Generate greenhouse gas emissions, either directly     | No Impact                 |
| or indirectly, that may have a significant impact on      |                           |
| the environment?                                          |                           |
| b) Conflict with an applicable plan, policy or regulation | No Impact                 |
| adopted for the purpose of reducing the emissions of      |                           |
| greenhouse gases?                                         |                           |

a. Construction of the proposed project may result in temporary emissions of greenhouse gases, however the project as a whole is not expected to generate greenhouse gas emissions, either directly or indirectly, that would have a significant impact on the environment. The project greenhouse gas emissions will be primarily from mobile source activities during construction. Long-term operation of the new well facility will not result in significant generation of greenhouse gas emissions.

An ozone destruct unit will be installed to convert any residual ozone gas to oxygen prior to its release to the atmosphere. The project will not violate any air quality standards nor will it contribute to an existing air quality violation during and after construction of the project.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. The project will not involve any conflicts or issues with the applicable air quality plans.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

## ix. HAZARDS AND HAZARDOUS MATERIALS:

| Question                                                                                                                                                                                                                                                                                           | <b>CEQA</b> Determination |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Create a significant hazard to the public or the<br>environment through the routine transport, use, or<br>disposal of hazardous materials?                                                                                                                                                      | No Impact                 |
| b) Create a significant hazard to the public or the<br>environment through reasonably foreseeable upset<br>and accident conditions involving the release of<br>hazardous materials into the environment?                                                                                           | Less Than Significant     |
| c) Emit hazardous emissions or handle hazardous or<br>acutely hazardous materials, substances, or waste<br>within one-quarter mile of an existing or proposed<br>school?                                                                                                                           | Less Than Significant     |
| <ul> <li>d) Be located on a site which is included on a list of<br/>hazardous materials sites compiled pursuant to<br/>Government Code Section 65962.5 and, as a result,<br/>would it create a significant hazard to the public or<br/>the environment?</li> </ul>                                 | No Impact                 |
| e) For a project located within an airport land use plan<br>or, where such a plan has not been adopted, within<br>two miles of a public airport or public use airport,<br>would the project result in a safety hazard or<br>excessive noise for people residing or working in the<br>project area? | No Impact                 |
| <ul> <li>f) Impair implementation of or physically interfere with<br/>an adopted emergency response plan or emergency<br/>evacuation plan?</li> </ul>                                                                                                                                              | No Impact                 |
| g) Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?                                                                                                                                                            | No Impact                 |

a. Construction will involve small amounts of hazardous and non-hazardous materials such as diesel fuel, hydraulic oil, grease, solvents, adhesives, paints, and other petroleum-based products. These materials are commonly used during construction activities and will be removed and disposed of at an appropriate landfill or recycling facility. Workers are trained to properly identify and handle all hazardous materials and to follow OSHA/CAL-OSHA regulations. Hazardous wastes will be either recycled or disposed of at a permitted and licensed treatment and/or disposal facility. While being used during construction, these materials will be stored in an appropriate storage location and containers in the manner specified by the manufacturer and disposed of in accordance with local, federal, and State regulations. Therefore, there will be no impact.

Operation of the facility will require the transport and use of chlorine for disinfection of the drinking water. Chlorine, in the form of 12.5% Sodium Hypochlorite, will be delivered on a bi-weekly or monthly basis depending on usage. A delivery will typically be less than 300 gallons. The chlorine will be contained on-site in a 300 gallon double-walled polyethylene chemical tank. Secondary containment will be provided as well for the tank and the chemical feed pump to ensure that no leaks or spills reach the ground surface. Therefore, there is no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. Sodium hypochlorite will be stored on site at the new municipal well site; however, the chlorine will be stored in small quantities (less than 300 gallons) in an appropriate double-walled chemical storage tank to prevent the accidental release of hazardous materials into the environment.

In addition, ozone will be injected into the flow stream as a strong oxidant to convert sulfide in the water to sulfate. An ozone analyzer will be installed inside the building and at the ozone destruct unit to detect any ozone leaks. In the event of the presence of ozone, the analyzer will send an alarm and shutdown the well and ozone operation.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

Impacts will be less than significant.

c. The project will not emit any hazardous emissions or involve the handling of hazardous waste. The project will involve 12.5% Sodium Hypochlorite and Ozone Gas. Sodium hypochlorite will be stored on site at the new municipal well site. The chlorine will have less than significant impact as it will be stored in an appropriate double-walled chemical storage tank to prevent the accidental release of hazardous materials into the environment. It will not be handled by Vaughn Water Company personnel, but rather delivered by delivery truck and the tank filled through a hose.

The second substance is ozone gas. It will be injected into the flow stream as a strong oxidant to convert sulfide to sulfate. To mitigate the hazard, an ozone analyzer will be installed inside the building to detect any ozone leaks and in that event the analyzer will send an alarm and shutdown the well and ozone operation. Therefore, the impact is less than significant. The site is located within one-quarter mile of an existing school and a daycare, see Exhibit J attached hereto.

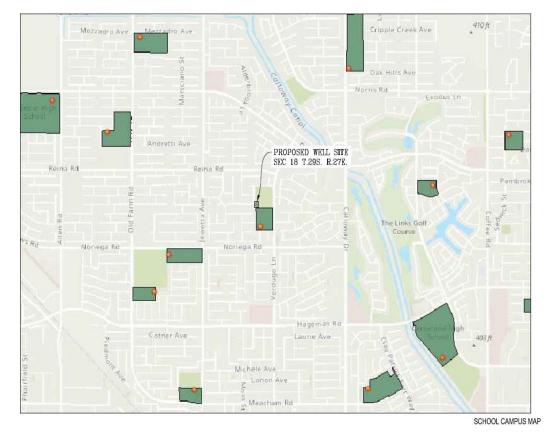



Figure 5: School Map (See Exhibit K for Full Size Version)

Mitigation Measure(s)

No mitigation required.

Level of Significance

Impacts will be less than significant.

d. The project site is located within and adjacent to existing residential development, a school, and a public park. It is not located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and as verified from the current list of hazardous materials sites pulled from the California Dept. of Toxic Substances Control attached hereto for reference as Exhibit L.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

e. There is not a public airport or planned airport land use plan in the project area.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

f. This project will not impair or interfere with an adopted emergency response plan or emergency evacuation plan. The project will comply with all local and State regulations regarding emergency response plans and access. The project will not inhibit the ability of local roadways to continue to accommodate emergency response and evacuation activities. Therefore, there is no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

g. The project will not expose people or structures to wildland fires. The well facility will be covered in gravel rock ground cover upon completion. Therefore, there is no impact.

Mitigation Measure(s)

No mitigation required.

Level of Significance

# x. HYDROLOGY AND WATER QUALITY:

| Question                                                                                                                                                                                                                                                                                                            | <b>CEQA</b> Determination       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| a) Violate any water quality standards or waste<br>discharge requirements or otherwise substantially<br>degrade surface or ground water quality?                                                                                                                                                                    | No Impact                       |
| <ul> <li>b) Substantially decrease groundwater supplies or<br/>interfere substantially with groundwater recharge<br/>such the project may impede sustainable<br/>groundwater management of the basin?</li> </ul>                                                                                                    | Less Than Significant<br>Impact |
| <ul> <li>c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:</li> <li>(i) result in substantial erosion or siltation on- or off-site;</li> </ul> | No Impact                       |
| <ul> <li>(ii) substantially increase the rate or amount of<br/>surface runoff in a manner which would result in<br/>flooding on- or offsite;</li> </ul>                                                                                                                                                             | No Impact                       |
| (iii) create or contribute runoff water which would<br>exceed the capacity of existing or planned<br>stormwater drainage systems or provide substantial<br>additional sources of polluted runoff; or                                                                                                                | No Impact                       |
| (iv) impede or redirect flood flows?                                                                                                                                                                                                                                                                                | No Impact                       |
| d) In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?                                                                                                                                                                                                                 | No Impact                       |
| e) Conflict with or obstruct implementation of a water<br>quality control plan or sustainable groundwater<br>management plan?                                                                                                                                                                                       | No Impact                       |

a. The proposed project involves drilling and equipping a new municipal water well facility and connecting it to the existing VWC distribution system. The project will not violate any water quality standards nor will it involve waste discharge.

Vaughn Water Company has not typically installed a water line discharge to waste. In the event that a water supply well needs to be flushed or discharged to waste, VWC will typically rent temporary piping and install the piping to discharge to land or a retention basin. If a discharge to waste line is required it will discharge to the ground under Statewide Water Quality Order 2003-0003-DWQ, Statewide General Waste Discharge Requirements for Discharges to Land with a Low Threat to Water Quality. The likely locations that this water will be pumped to are either – above ground sprinkler application of water to the NRRPD Almondale Park or to

the existing retention basin within approximately 700-ft of the site with approval from the County of Kern.

The well will be designed such that the water produced meets all Title 22 drinking water standards. There is no surface water in the vicinity of the project.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. The project includes the construction and equipping of a new municipal well. The new municipal well will not substantially deplete groundwater supplies or lower the local groundwater table level. Historically, Vaughn Water Company water wells have maintained a consistent pumping water level due to the depth of the company wells. The new well will be completed at a depth that is deeper than most wells in the area which will limit the impacts on shallower wells in the area.

Vaughn Water Company typically completes their municipal wells approximately 1,200-feet to 1,500-feet bgs. This is much deeper than the 600-ft to 800-ft depth that wells in this area are routinely completed too. The soil formation in this area is composed of silts, sands, and clays and is considered an unconfined aquifer, however there are significant clay layers typically around 350-ft, 400-ft, 500-ft 650-ft, and 800-ft. This deeper aquifer, below 800-ft, often encounters a color change and has reduced dissolved oxygen concentrations resulting in taste and odor issues. Pumping from this deeper aquifer results in less impact on the shallower aquifer and any nearby wells, but requires the water company to treat with ozone.

The nearest municipal water well is an existing Vaughn Water Company well and it is approximately 2,000-ft away. A well spacing of approximately 1,300-ft to 1,500-ft generally mitigates any effects from the cone of depression.

The increase in water demand on the system is a result of residential and commercial growth in the Rosedale area of NW Bakersfield. The increase in water demand is a peak demand increase of approximately 2,500 gpm or approximately 1,000 ac-ft per year.

The normal demand is 4,162 MG or approximately 12,775 ac-ft per year. The normal year supply is approximately 28,080 ac-ft per year. The annual supply for a single dry year is not expected to change and the available supply remains approximately 28,080 ac-ft per year. Based on the multiple dry year period from 2013 through 2017, it is expected that there might be a 20% decline in water supply availability. This equates to an available supply of approximately 22,464 ac-ft per year which exceeds the normal demand of 12,775 ac-ft per year.

In general, groundwater level depletion can be attributed to the current drought and over-pumping of the groundwater by local farmers. Vaughn Water Company lies within the Rosedale/Rio Bravo Water Storage District (RRBWSD) and Kern County Water Agency's (KCWA) Improvement District No. 4 boundaries and the shareholders (rate payers) in Vaughn Water Company pay a pump tax to RRBWSD and KCWA. That pump tax provides revenue for RRBWSD to recharge and bank groundwater in an effort to maintain a groundwater balance. Both RRBWSD and KCWA have groundwater management programs that help to preserve the groundwater source by monitoring water quality and water levels.

## Mitigation Measure(s)

HYD-1 Vaughn Water Company regularly monitors the groundwater levels in their wells in order to ensure the wells are not excessively lowering groundwater levels in the area. Well monitoring will continue in nearby wells during construction activity.

# Level of Significance

Impacts will be less than significant.

c. The project area is within an existing residential development and a community park. The ground will be restored along the pipeline trench alignments to match existing conditions after installation of the pipeline. The existing drainage pattern of the project areas will not be altered. This project site is relatively flat and will not alter the existing drainage pattern or result in substantial erosion or siltation.

i) The project site is relatively small (1/2-acre) and flat and therefore will not result in substantial erosion or siltation on-site or off-site. With the implementation of BMP's, erosion or siltation is less than significant.

ii) The project site is relatively small (1/2-acre) and will be surfaced with a well-graded <sup>3</sup>/<sub>4</sub>-inch rock such that surface water will still drain as it does currently at the park site. The project will not cause substantial surface runoff that will result in flooding on-site or off-site.

iii) The project will not substantially increase the rate or amount of surface runoff in a manner that would result in flooding on-site or off-site, contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems, nor provide additional sources of polluted runoff. Therefore, the project will have no impact.

iv)The project is not located near a stream or river and is not located in a wetland area or the floodplain.

A flood insurance rate map (FIRM) for the project area is attached hereto as Exhibits H.

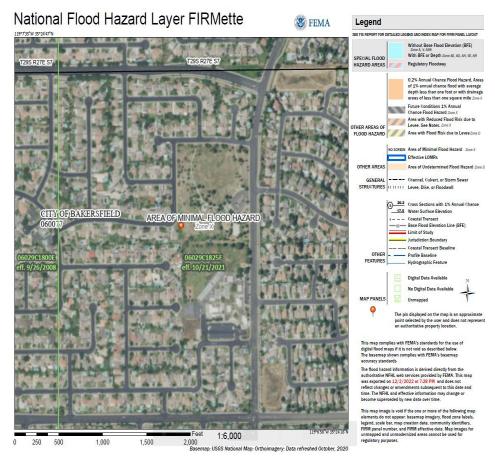



Figure 6: Flood Zone Map (See Exhibit H for Full Size Version)

The project will not impede or redirect flood flows. In addition, the water well concrete foundation will be constructed a minimum of 2-ft above natural ground surface to protect the groundwater quality from the influence of flood or surface waters, therefore the project will have no impact.

Mitigation Measure(s)

No Mitigation required.

Level of Significance

There will be no impact.

d. The project will not create nor contribute to a seiche, tsunami, or mudflow.

The project is not located near the ocean or a steep topographic feature. Tsunamis and seiche's precipitate out of large water bodies that are not present near the project site. The Kern County Multi-Jurisdictional Hazard Mitigation Plan identifies dams and levees throughout Kern County and their potential hazard classification. The project site is located outside of the inundation exposure zone. Therefore, the project will have no impact.

Mitigation Measure(s)

No Mitigation required.

Level of Significance

There will be no impact.

e. The project will not conflict with or obstruct implementation of a quality control plan or sustainable groundwater management plan.

The amount of water anticipated to be extracted from the Meadow Creek well on an annual basis is approximately 1,000 ac-ft. Vaughn Water Company overlies two local water agencies: the Kern County Water Agency - Improvement District No. 4 (ID4) and Rosedale Rio Bravo Water Storage District (RRBWSD). Vaughn Water Company supports the efforts of both agencies to achieve a groundwater balance in the Company's service area and recognizes that Company-served landowners within both agencies have contributed significant amounts of money to aid in the achievements made thus far and will continue to contribute towards those efforts. The Company pays tolls on the water pumped out of the

ground within the ID4 service boundary to the Kern County Water Agency. These charges help pay for the operation of ID4 projects including operation and maintenance of the Cross Valley Canal and recharge and recovery operations. Furthermore, the Water Company has a Memorandum of Understanding with the underlying water district – Rosedale Rio Bravo Water Storage District. RRBWSD has endeavored to create a groundwater balance within the RRBWSD District through importation of water for recharge and in-lieu water supply programs and through cooperative programs with other agencies. Studies by the District indicate that a groundwater balance is being achieved. Therefore, as a result of the recharge operations by both local water agencies, the project will not significantly impact the basin. The Water Company participates in financing these District programs through property taxes paid by Company shareholders and by fees levied against each acre-foot of water pumped by the company within ID4.

The Project will not result in cumulative effects on the groundwater basin for the reasons noted above. The Water Company shareholders (customers) pay property taxes and pump taxes to the underlying local water agencies: Kern County Water Agency – Improvement District No. 4 and Rosedale Rio Bravo Water Storage District. Those water districts implement groundwater replenishment programs and recharge operations to store water in the underlying groundwater basin when excess water is available.

The project will comply with all applicable local and State standards during construction and operation. This project is not anticipated to use or substantially deplete groundwater supplies or conflict with any future adopted groundwater management plan. Therefore, the project will have no impact.

### *Mitigation Measure(s)*

No Mitigation required.

Level of Significance

## xi. LAND USE AND PLANNING:

| Question                                                                                                                                                                                                               | <b>CEQA</b> Determination |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Physically divide an established community?                                                                                                                                                                         | No Impact                 |
| <ul> <li>b) Cause a significant environmental impact due to a<br/>conflict with any land use plan, policy, or regulation<br/>adopted for the purpose of avoiding or mitigating an<br/>environmental effect?</li> </ul> | No Impact                 |

a. The project site will be constructed on existing property owned by Vaughn Water Company and will not divide an established community. The well facility is planned to be installed on APN 526-010-14 located in the southwest corner of the existing Almondale Park.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. The well project is being constructed on property that was purchased by Vaughn Water Company for this purpose. It will not conflict with any applicable land use plan, policy, or regulation. The project is within Kern County Zoning OS (open space), which under permitted uses (Ch. 19.44.020(C)), allows for water systems small or large.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### xii. MINERAL RESOURCES:

| Question                                                                                                                                                                    | <b>CEQA</b> Determination |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?                                      | No Impact                 |
| b) Result in the loss of availability of a locally-important<br>mineral resource recovery site delineated on a local<br>general plan, specific plan or other land use plan? | No Impact                 |

a. The California Geologic Energy Management Division (CalGEM) prioritizes protecting public health, safety, and the environment in its oversight of the oil, natural gas, and geothermal industries. The project is not located in an identified CalGEM oilfield and there are no known wells located on the site. It will not result in the loss of availability of a known mineral resource that would be of value to the region and residents of the state. Therefore, the project will have no impact.

### *Mitigation Measure(s)*

No mitigation required.

Level of Significance

There will be no impact.

b. The project is not designated as a mineral recovery area and will not alter any existing plans that protect mineral resources. The project will not result in the loss or availability of a locally important mineral resource recovery site and is considered to have no impact.

Mitigation Measure(s)

No mitigation required.

Level of Significance

### xiii. NOISE:

| Question                                                                                                                                                                                                                                                                                                                 | <b>CEQA</b> Determination                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| a) Generation of a substantial temporary or permanent<br>increase in ambient noise levels in the vicinity of the<br>project in excess of standards established in the local<br>general plan or noise ordinance, or applicable<br>standards of other agencies?                                                            | Less Than Significant<br>with Mitigation<br>Incorporated |
| <ul> <li>b) Generation of excessive groundborne vibration or<br/>groundborne noise levels?</li> </ul>                                                                                                                                                                                                                    | Less Than Significant<br>with Mitigation<br>Incorporated |
| c) For a project located within the vicinity of a private<br>airstrip or an airport land use plan or, where such a<br>plan has not been adopted, within two miles of a<br>public airport or public use airport, would the project<br>expose people residing or working in the project area<br>to excessive noise levels? | No Impact                                                |

a. The City of Bakersfield General Plan establishes acceptable levels for noise and land use compatibility. The land use in the project site area is residential, a school, and a neighborhood park. The acceptable community noise exposure is as follows:

|         | Normally Acceptable              | Conditionally Acceptable |
|---------|----------------------------------|--------------------------|
| Residen | tial $50-60$ Ldn or CNEL         | 60 – 70 Ldn or CNEL      |
| School  | 50-60 Ldn or CNEL                | 60-65 Ldn or CNEL        |
| Park    | 50 – 67.5 Ldn or CNEL            | NA                       |
| CNEL    | Community Noise Equivalent Level |                          |

Ldn Day/Night Average Sound Level

The nearest receptors are residences whose property is adjacent to the well site project site. The equipment to be utilized for the project is standard for conventional construction. However, the exception to this statement is the well drilling equipment and the well drilling hours.

During well drilling operations, sound barrier walls (insulated walls) will be installed that are 16-feet tall on the west, south, and east sides of the site to mitigate any construction noise. These walls will be temporary in nature but will remain in place during well drilling and well development to shield noise and light from the well drilling equipment.

Noise levels during pipeline and well equipping construction of the project will be mitigated by limiting construction hours to daylight hours and weekdays only.

For the operation of the facility, noise will be generated from pumps and motors and ozone treatment equipment. The well will be equipped with an insulated motor enclosure to mitigate motor noise and the ozone treatment equipment will be located within an insulated and conditioned metal building. In addition, an 8-ft tall masonry block wall will be installed around the well site to further help mitigate any operational noise. Noise impacts are considered to be less than significant.

# Mitigation Measure(s)

- NOI-1 Noise levels will be increased on a temporary basis during construction activities. Installation of sound barrier walls will be installed around the south, west, and east sides of the well site during well drilling activities to reduce noise and light to nearby residents.
- NOI-2 The temporary noise impacts attributed to construction will be mitigated for all construction, with the exception of the well drilling activities, by limiting the hours of construction on-site to weekdays, Monday thru Friday, from 7 am to 5 pm.
- NOI-3 The well will be equipped with an insulated motor enclosure to mitigate motor noise and the electrical and ozone treatment equipment will be located within an insulated metal building. The booster pumps are equipped with variable speed drives to help run at optimum efficiency and shorter, quieter run times. The well site will be secured with an 8-ft masonry wall, which is 2-ft taller than normal, to help reduce the overall noise impact.

# Level of Significance

Impacts will be less than significant with mitigation incorporated.

b. Construction activities, in general, can have the potential to create groundborne vibrations and the project may generate these ground-borne vibration or noise levels. Construction activities most likely to cause vibration include heavy construction equipment and drilling. The nearest receptors are residences whose property is adjacent to the well site. Noise levels and vibrations will be increased temporarily during construction but will be mitigated as described above by limiting pipeline and well equipping work to daylight hours and weekdays only and installing sound barrier walls for well drilling activities. Therefore, vibration impacts associated with construction are anticipated to be less than significant.

# Mitigation Measure(s)

- NOI-1 Noise levels will be increased on a temporary basis during construction activities. Installation of sound barrier walls will be installed around the south, west, and east sides of the well site during well drilling activities to reduce noise and light to nearby residents.
- NOI-2 The temporary noise impacts attributed to construction will be mitigated for all construction, with the exception of the well drilling activities, by limiting the hours of construction on-site to weekdays, Monday thru Friday, from 7 am to 5 pm.
- NOI-3 The well will be equipped with an insulated motor enclosure to mitigate motor noise and the electrical and ozone treatment equipment will be located within an insulated metal building. The booster pumps are equipped with variable speed drives to help run at optimum efficiency and shorter, quieter run times. The well site will be secured with an 8-ft masonry wall, which is 2-ft taller than normal, to help reduce the overall noise impact.

## Level of Significance

Impacts will be less than significant with mitigation incorporated.

c. The project site is not located within 2 miles of an airport. The project site location will not expose construction workers or operators to excessive noise.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### xiv. POPULATION AND HOUSING:

| Question                                                                                                                                                                                                                        | <b>CEQA</b> Determination |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Induce substantial unplanned population growth in<br>an area, either directly (for example, by proposing<br>new homes and businesses) or indirectly (for<br>example, through extension of roads or other<br>infrastructure)? | No Impact                 |
| <ul> <li>b) Displace substantial numbers of existing people or<br/>housing, necessitating the construction of<br/>replacement housing elsewhere?</li> </ul>                                                                     | No Impact                 |

a. The project involves the drilling and equipping of a new municipal water well facility and connecting it to the existing VWC distribution system. The system improvements are necessary to provide municipal water supply to residences in the northwest part of Bakersfield. This project will have an indirect impact on growth in the area in that it provides a water supply. However, the water well facility is needed as a result of new growth and these residential developments are required to prepare the necessary environmental documents for their projects and to obtain permitting from the City or County, as applicable.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. This project will not displace any existing housing or residences. Therefore, the project will have no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### xv. **PUBLIC SERVICES**:

| Question                    | CEQA Determination |
|-----------------------------|--------------------|
| a) Fire protection?         | No Impact          |
| b) Police protection?       | No Impact          |
| c) Schools?                 | No Impact          |
| d) Parks?                   | No Impact          |
| e) Other public facilities? | No Impact          |

a. Fire protection for the project is provided by the Kern County Fire Department and the City of Bakersfield Fire Department. The project will not result in substantial adverse physical impacts to or create the need for fire protection. The new well will aid Vaughn Water Company in ensuring that the community has adequate pressure and fire flow protection, therefore there is no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. The Kern County Sheriff's Department and the City of Bakersfield Police Department provide law enforcement services to this area. As a water well site, the project will not result in substantial adverse physical impacts to or create the need for additional police protection.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

c. The project is located within the Rosedale Union Elementary School District and the Kern High School District. The project is a water well site and will not result in substantial adverse physical impacts to or create the need for schools.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

d. The project is a water well site and will not result in substantial adverse physical impacts to or create the need for parks.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

e. The project is a water well site and will not result in substantial adverse physical impacts to or create the need for any other public facilities.

Mitigation Measure(s)

No mitigation required.

Level of Significance

### xvi. RECREATION:

| Question                                                                                                                                                                                                                   | <b>CEQA</b> Determination |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Would the project increase the use of existing<br>neighborhood and regional parks or other<br>recreational facilities such that substantial physical<br>deterioration of the facility would occur or be<br>accelerated? | No Impact                 |
| b) Does the project include recreational facilities or<br>require the construction or expansion of recreational<br>facilities which might have an adverse physical effect<br>on the environment?                           | No Impact                 |

a. The project will not increase the use of existing neighborhood and regional parks or other recreational facilities. There will be no physical deterioration of the facilities and the project will not require the construction or expansion of recreational facilities therefore, there is no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

b. The project is adjacent to the Almondale Park and has a private easement through the southern portion of the park. However, the project does not include or require the construction or expansion of recreational facilities and therefore has no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### xvii. TRANSPORTATION:

| Question                                               | <b>CEQA</b> Determination |
|--------------------------------------------------------|---------------------------|
| a) Conflict with a program, plan, ordinance, or policy | Less Than Significant     |
| addressing the circulation system, including transit,  | with Mitigation           |
| roadway, bicycle and pedestrian facilities?            | Incorporated              |
| b) Would the project conflict or be inconsistent with  | No Impact                 |
| CEQA Guidelines section 15064.3, subdivision (b)?      |                           |
| c) Substantially increase hazards due to a geometric   | No Impact                 |
| design feature (e.g., sharp curves or dangerous        |                           |
| intersections) or incompatible uses (e.g., farm        |                           |
| equipment)?                                            |                           |
| d) Result in inadequate emergency access?              | No Impact                 |

a. The project will not conflict with any programs, plans, ordinances, or policies including transit, roadway, bicycle and pedestrian facilities. Construction related traffic is anticipated to be short-term and will not significantly impact existing or planned circulation infrastructure. Construction signage will be provided to alert the public to the construction activity. All construction activities in the roadway and sidewalk will be returned to original conditions after construction. A drive approach into the well site will be added, however an encroachment permit will be obtained for any work performed in the road right-of-way.

The proposed operation of the project does not require on-site employees and will have minimal impact on the City's circulation system.

*Mitigation Measure(s)* 

- TRA-1 During construction there will be an increase in traffic as a result of material deliveries and construction crews, however construction signage will be provided to alert people around the construction activity, as needed.
- TRA-2 All necessary encroachment permits for any proposed work within the County road right-of-way will be obtained.

## Level of Significance

Impacts will be less than significant with mitigation incorporated.

b. The project will not conflict with CEQA Guidelines section 15064.3, subdivision (b). The project will not exceed a level of service standard established by the county congestion management agency for designated roads or highways. Vehicles traveling to and from the site during construction will temporarily increase traffic in the area. Once construction is complete, traffic to and from the site will be minimal and not impact congestion. The combined annual emissions report is attached as Exhibit C. In the report, estimates for traffic to and from the site during construction and operation are considered.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

c. The project does not include road design and construction and therefore has no impact. The project will not increase hazards due to sharp turns, curves, dangerous intersections, or incompatible uses. Construction signage will be provided to alert the public to the construction activity.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

d. The project will be required to comply with all emergency access requirements adopted and set forth in the City of Bakersfield Municipal Code. The proposed project will not require closure of public roads or inhibit access by emergency vehicles. The project will not result in inadequate emergency access and therefore has no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

### xviii. TRIBAL CULTURAL RESOURCES:

| Question                                                                                                                                                                                                                                                                                 | <b>CEQA</b> Determination                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| a) Listed or eligible for listing in the California Register<br>of Historical Resources, or in a local register of                                                                                                                                                                       | Less Than Significant<br>with Mitigation                 |
| historical resources as defined in Public Resources                                                                                                                                                                                                                                      | Incorporated                                             |
| Code section 5020.1(k), or                                                                                                                                                                                                                                                               |                                                          |
| <ul> <li>b) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision</li> </ul> | Less Than Significant<br>with Mitigation<br>Incorporated |
| (c) of Public Resource Code Section 5024.1, the lead<br>agency shall consider the significance of the<br>resource to a California Native American tribe.                                                                                                                                 |                                                          |

a. The project is located within an existing residential neighborhood in the City of Bakersfield and County of Kern. A cultural resource records search was performed by the California Historical Resources Information System, see CHRIS Records Search attached as Exhibit E. The records search confirmed that there are no recorded cultural resources within the proposed project area or within a one-half mile radius of the project area.

Upon any ground breaking activity, there is the possibility of uncovering an object of cultural value. Mitigation measures CUL-1 and CUL-2 must be implemented if any artifacts or human remains are discovered. Therefore, the project will have a less than significant impact with mitigations incorporated.

Mitigation Measure(s)

Implementation of Mitigation Measures CUL-1 and CUL-2.

## Level of Significance

Impacts will be less than significant with mitigation incorporated.

b. A records search was completed by the Native American Heritage Commission, see Exhibit F. Furthermore, a Tribal Consultation list was requested and the tribes recommended have been contacted.

Mitigation Measure(s)

Implementation of Mitigation Measures CUL-1 and CUL-2.

Level of Significance

Impacts will be less than significant with mitigation incorporated.

# xix. UTILITIES AND SERVICE SYSTEMS:

| Question                                                                                                                                                                                                                                                                                            | <b>CEQA</b> Determination |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Require or result in the relocation or construction of<br>new or expanded water, wastewater treatment or<br>storm water drainage, electric power, natural gas, or<br>telecommunications facilities, the construction or<br>relocation of which could cause significant<br>environmental effects? | No Impact                 |
| <ul> <li>b) Have sufficient water supplies available to serve the<br/>project and reasonably foreseeable future<br/>development during normal, dry and multiple dry<br/>years?</li> </ul>                                                                                                           | Less Than Significant     |
| c) Result in a determination by the wastewater<br>treatment provider which serves or may serve the<br>project that it has adequate capacity to serve the<br>project's projected demand in addition to the<br>provider's existing commitments?                                                       | No Impact                 |
| d) Generate solid waste in excess of State or local<br>standards, or in excess of the capacity of local<br>infrastructure, or otherwise impair the attainment of<br>solid waste reduction goals?                                                                                                    | No Impact                 |
| e) Comply with federal, state, and local management<br>and reduction statutes and regulations related to<br>solid waste?                                                                                                                                                                            | No Impact                 |

a. This project is the construction of a new water facility. The project will not require or result in the relocation or construction of expanded or new wastewater treatment or storm water drainage, electrical power, natural gas, or telecommunications facilities of which could cause significant environmental effects. The residential growth in the area is requiring the need for additional water supply; however, Vaughn Water Company does not regulate or oversee the residential growth. These developments are overseen by the County or the City as applicable and each development is responsible for their own environmental documents.

## *Mitigation Measure(s)*

No mitigation required.

Level of Significance

b. The project is a water system project. It will supply water to Vaughn Water Company's water mains and supply water to the community.

The increase in water demand on the system is a result of residential and commercial growth in the Rosedale area of NW Bakersfield. The increase in water demand is a peak demand increase of approximately 2,500 gpm or approximately 1,000 ac-ft per year.

The normal demand is 4,162 MG or approximately 12,775 ac-ft per year. The normal year supply is approximately 28,080 ac-ft per year. The annual supply for a single dry year is not expected to change and the available supply remains approximately 28,080 ac-ft per year. Based on the multiple dry year period from 2013 through 2017, it is expected that there might be a 20% decline in water supply availability. This equates to an available supply of approximately 22,464 ac-ft per year which exceeds the normal demand of 12,775 ac-ft per year.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

Impacts will be less than significant.

c. The project will not generate additional demand to the wastewater treatment provider. Therefore, there will be no increase in wastewater and the project will have no impact.

Mitigation Measure(s)

No mitigation required.

Level of Significance

There will be no impact.

d. The project does not have any solid waste disposal needs. During temporary construction, unused construction materials, which are not anticipated to contain hazardous materials, will be collected and transported away for the site and disposed of at an approved landfill facility.

*Mitigation Measure(s)* 

No mitigation required.

#### Level of Significance

There will be no impact.

e. The project does not involve the generation of solid waste.

Mitigation Measure(s)

No mitigation required.

Level of Significance

#### **xx. WILDFIRE:**

| Question                                                                                                                                                                                                                                                                       | <b>CEQA</b> Determination |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| a) Substantially impair an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                                                       | No Impact                 |
| <ul> <li>b) Due to slope, prevailing winds, and other factors,<br/>exacerbate wildfire risks, and thereby expose project<br/>occupants to, pollutant concentrations from a wildfire<br/>or the uncontrolled spread of a wildfire?</li> </ul>                                   | No Impact                 |
| c) Require the installation or maintenance of associated<br>infrastructure (such as roads, fuel breaks, emergency<br>water sources, power lines or other utilities) that may<br>exacerbate fire risk or that may result in temporary or<br>ongoing impacts to the environment? | No Impact                 |
| <ul> <li>d) Expose people or structures to significant risks,<br/>including downslope or downstream flooding or<br/>landslides, as a result of runoff, post-fire slope<br/>instability, or drainage changes?</li> </ul>                                                        | No Impact                 |

a. The proposed project involves drilling and equipping a new municipal water well facility and connecting it to the existing Vaughn Water Company distribution system. The project is located in a Local Responsibility Area (LRA) and is greater than 5 miles from a moderate fire hazard severity zone according to the California Department of Forestry and Fire Protections FRAP FHSZ map. The project will not impair an adopted emergency response plan or emergency evacuation plan and therefore has no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

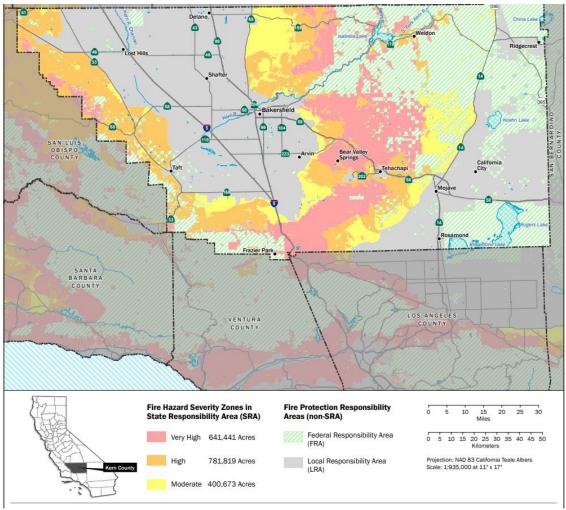



Figure 7: Fire Severity Zone Map

b. The project will be constructed and operated in an existing developed area. The project will not expose project occupants to pollutant concentrations from a wildfire or uncontrolled spread of a wildfire and therefore has no impact.

Mitigation Measure(s)

No mitigation required.

Level of Significance

c. The project will not require the installation or maintenance of associated infrastructure that may exacerbate fire risk and therefore has no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

There will be no impact.

d. The project is not located near State responsibility areas or lands classified as very high fire hazard severity zones. The project site is relatively flat. The project will not expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post fire slope instability, or drainage changes and therefore has no impact.

*Mitigation Measure(s)* 

No mitigation required.

Level of Significance

#### xxi. MANDATORY FINDINGS OF SIGNIFICANCE:

| Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>CEQA</b> Determination                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| <ul> <li>a) Does the project have the potential to substantially<br/>degrade the quality of the environment, substantially<br/>reduce the habitat of a fish or wildlife species, cause<br/>a fish or wildlife population to drop below self-<br/>sustaining levels, threaten to eliminate a plant or<br/>animal community, substantially reduce the number<br/>or restrict the range of a rare or endangered plant or<br/>animal or eliminate important examples of the major<br/>periods of California history or prehistory?</li> </ul> | Less Than Significant<br>with Mitigation<br>Incorporated |
| <ul> <li>b) Does the project have impacts that are individually limited, but cumulatively considerable?</li> <li>("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?</li> </ul>                                                                                                                                                               | Less Than Significant<br>with Mitigation<br>Incorporated |
| <ul> <li>c) Does the project have environmental effects which<br/>will cause substantial adverse effects on human<br/>beings, either directly or indirectly?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   | Less Than Significant<br>with Mitigation<br>Incorporated |

a. As evaluated in this IS/MND, the project will not substantially degrade the quality of the environment; substantially reduce the habitat of a fish or wildlife species; cause a fish or wildlife population to drop below self-sustaining levels; threaten to eliminate a plant or animal community; reduce the number or restrict the range of an endangered, rare, or threatened species; or eliminate important examples of the major periods of California history or prehistory. With implementation of the mitigation measures recommended in this document, the proposed project would not have the potential to degrade the quality of the environment, significantly impact biological resources, or eliminate important examples of the major periods of California's history or prehistory. Therefore, with the following mitigation measures, the project will have a less than significant impact.

#### Mitigation Measure(s)

Implementation of Mitigation Measures AES-1 and AES-2; AQ-1 and AQ-2; BIO-1 through BIO-16; CUL-1 and CUL-2; HYD-1; NOI-1, NOI-2, NOI-3; and TRA-1 and TRA-2.

#### Level of Significance

The project will have a less than significant impact with the mitigations

incorporated.

b. Any potentially significant impacts of the project will be reduced to a less than significant level following the incorporation of the mitigation measures listed. The proposed project will not otherwise combine with impacts of related development to add considerably to any cumulative impacts that are individually limited, but cumulatively considerable. Therefore, the project will have a less than significant impact with the mitigations incorporated.

#### *Mitigation Measure(s)*

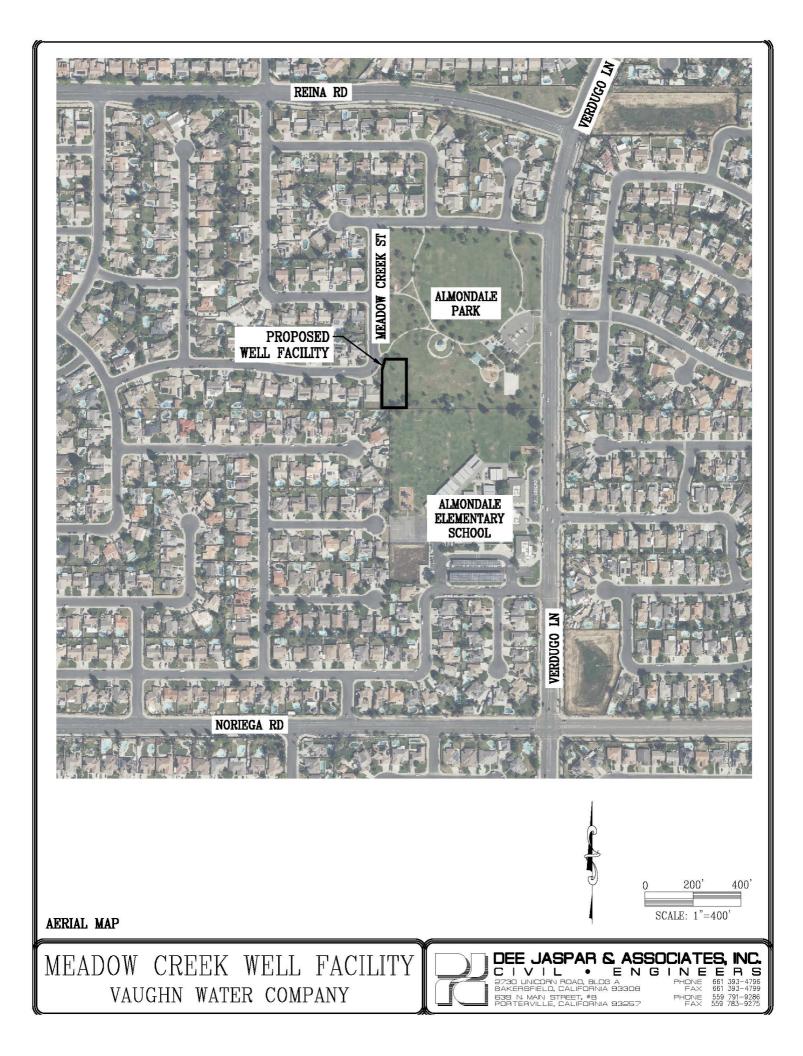
Implementation of Mitigation Measures AES-1 and AES-2; AQ-1 and AQ-2; BIO-1 through BIO-16; CUL-1 and CUL-2; HYD-1; NOI-1, NOI-2, NOI-3; and TRA-1 and TRA-2.

#### Level of Significance

The project will have a less than significant impact with the mitigations incorporated.

c. All of the project's impacts, both direct and indirect that are attributable to the project were identified and mitigated. The project mitigation measures will substantially reduce or eliminate the impacts of the project. Therefore, the project does not have environmental effects which will cause substantial adverse effects on human beings directly or indirectly because all potentially adverse direct impacts of the project are identified as having no impact, less than significant impact, or less than significant impact with mitigation.

#### Mitigation Measure(s)


Implementation of Mitigation Measures AES-1 and AES-2; AQ-1 and AQ-2; BIO-1 through BIO-16; CUL-1 and CUL-2; HYD-1; NOI-1, NOI-2, NOI-3; and TRA-1 and TRA-2.

#### Level of Significance

The project will have a less than significant impact with the mitigations incorporated.

VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

#### EXHIBIT A "PROJECT SITE PLAN"



VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

#### EXHIBIT B "PROJECT DESCRIPTION"

#### VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

#### **PROJECT LOCATION AND DESCRIPTION:**

The proposed project is for Vaughn Water Company and involves drilling and equipping a new municipal water well, constructing an Ozone Treatment facility, and connecting it to the existing VWC distribution system.

The well site property is approximately 105-ft by 210-ft or approximately <sup>1</sup>/<sub>2</sub>acre. The site is currently irrigated lawn as part of the community park landscaping. The grass and sprinkler system will be removed within the limits of the well site and the site graded to be level and uniform. The earthwork will involve moving approximately 470 cubic yards and the material will balance so there is no import or off-haul of dirt.

The site grading is anticipated to involve approximately 20 working days. It is anticipated that the following pieces of equipment will be used during construction activities:

- Loader
- Backhoe
- Skip and Drag
- Sheepsfoot Compactor

The well is planned to be drilled to an approximate depth of 1,500-ft using the reverse rotary method. Water quality zone testing will be performed in the well pilot hole in an effort to complete a well not requiring treatment. The well construction work will include installing a 50-ft deep, 36-inch diameter steel conductor, drilling a 17 ½ - inch diameter pilot hole, performing geophysical logging, water quality depth sampling, reaming of the pilot hole to 28-inch diameter, installation of 16-inch diameter steel casing, installation of gravel pack, installation of a cement annular seal, and well development. The initial development water will be disposed of in a 20,000 gallon tank and removed from the site. The development water will then be discharged to the existing storm drain system. It is expected that the completed well will have hydrogen sulfide and that well head treatment in the form of ozonation will be used to remove taste and odor.

The production well drilling phase will involve the drilling, construction, and development of a new municipal water supply well. It is anticipated to involve approximately 90 working days with well drilling activating taking place 24 hours per day, seven days per week for approximately 45 of those working days.

It is anticipated that the following pieces of equipment will be used during construction activities:

- Well Drilling Rig with Pipe Trailer
- Mud Pits
- Backhoe
- Loader
- Forklift

The site will require over-excavation to 18-inches below proposed concrete foundations and will be recompacted to 90% relative compaction to reduce the potential for settlement. Concrete foundations will be constructed for the deep well, the treatment building, the booster pumps, and the hydropneumatic tank.

The deep well will have a 10-ft by 10-ft by 30-in thick concrete foundation and be equipped with a vertical turbine pump and vertical hollowshaft electric motor with a variable speed drive. The well will have a 10-ft by 10-ft by 11-ft high removable metal enclosure building for noise attenuation. The site will be secured with approximately 575-ft of 8-ft tall masonry block wall and include a drive gate and a personnel gate to Meadow Creek Street for access. The well site will be surfaced with <sup>3</sup>/<sub>4</sub>" Class II aggregate base with the limits being the perimeter block wall. The 16-inch well discharge piping will be routed into an approximate 36-ft long by 28-ft wide by 16-ft tall steel building structure with a concrete foundation that is 46-ft by 38-ft by 6-in thick and that houses the electrical equipment including the meter main, motor control center, and PLC and also houses the treatment equipment. Two air conditioner units will be mounted on a concrete pad on the exterior of the building for interior climate control.

The flow rate from the well will be regulated by a flow control valve to maintain 2,500 gpm and will be metered. The water will pass through a Mazzei flash reactor for mixing of the raw well water with a treated water bypass prior to entering the stainless steel storage tank. Ozone gas will be injected into a bypass flow stream of approximately 250 gpm as a strong oxidant to convert the sulfide to sulfate. The pressure drop across a venturi injector will create a suction that draws in the ozone. The ozone will be generated by a 54 lb/day ozone generator (Model CFS-14) manufactured by Suez. The ozone generator will be supplied cooling water and dry oxygen. It will utilize oxygen and electricity to convert oxygen to ozone. All ozone piping will be stainless steel. The process piping, electrical equipment, ozone generator, air compressor, air dryer, oxygen concentrator, and receiver tanks will be installed in the air-conditioned metal treatment building. An ozone analyzer will be installed inside the treatment building and at the ozone destruct unit to detect any ozone leaks and in that event the analyzer will send an alarm and shutdown the well and ozone operation.

A 6-ft by 7-ft by 8-in thick concrete foundation for a 12.5% sodium hypochlorite storage tank and chemical feed pump is located between the treatment building and

the stainless steel storage tank. The well discharge piping will exit the building, transition underground, and resurface and enter an AWWA D103 stainless steel bolted tank that will be constructed with a gravel ring foundation. The stainless steel contact tank dimensions will be 30-ft diameter and 16-ft side shell height. The tank is also equipped with an ozone destruct unit that converts any residual ozone gas back to oxygen. The stainless steel tank discharge piping will be 18-inch diameter steel piping that feeds the suction header for three horizontal centrifugal split-case booster pumps. Each booster pump will have a concrete foundation that is 3-ft by 6-ft by 36-in thick. The booster pumps are equipped with variable speed drives. Two of the pumps are 50hp and the third pump is 100hp. The pump discharge piping then enters a 16-in diameter discharge header. The discharge header enters a 3,000-gallon hydropneumatic pressure vessel. There are two pressure vessel concrete footings each 13-ft long by 5-ft wide by 24-in thick. The 16-inch diameter booster station piping will transition below ground after the pressure vessel and transition to 16-inch C900 PVC pipe. The piping will connect to the existing VWC distribution system at the intersection of Meadow Creek Street and Polo Drive on the west side of the well site, approximately 30-ft in length, and a second connection will be made to the east to the existing VWC distribution system piping in Verdugo Lane via a 16-inch C900 PVC conveyance pipe routed approximately 650-ft east through the park in a private easement.

The well and treatment facility will be painted a neutral color (tan) and site landscaping installed around the perimeter of the site for it to be aesthetically pleasing and blend in with the adjacent park and neighborhood.

The well equipping and site development phase is anticipated to involve approximately 12 months. However, equipment will not run continually or on a daily basis throughout this entire construction period. It is anticipated that the following heavy pieces of equipment will be used for approximately 100 working days during construction activities:

- Excavator
- Loader
- Backhoe
- Crane
- Concrete Trucks
- Generator
- Air Compressor
- Small Tools
- Service Trucks

Construction of the project is anticipated to span an approximate 18 to 24 month period.

The well site will be routinely visited by a Vaughn Water Company operator – typically once per day to check on the operation and inspect for any issues along

with the preparation of a daily report. Routine maintenance operations will include:

- Well Lubrication Check daily
- Chlorine Tank Level Check daily
- Chlorine Residual Check daily
- Water Production Reading Check daily
- Check dew point monthly
- Booster Pump check monthly
- Well water level measurements monthly
- Dryer Unit oil vapor filter replacement quarterly
- Hydrocarbon filter replacements on dryer units, compressor units, fisher
  - valves quarterly
- Air Conditioning service quarterly
- Site Cleanup quarterly
- Oil changes for electric motors semi-annual

A back-up emergency generator will not be installed as part of this project.

VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

EXHIBIT C "CONSTRUCTION PHASE – AIR EMISSIONS DATA"

## Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.4. Operations Emissions Compared Against Thresholds
- 6. Climate Risk Detailed Report
  - 6.2. Initial Climate Risk Scores
  - 6.3. Adjusted Climate Risk Scores
- 7. Health and Equity Details
  - 7.3. Overall Health & Equity Scores
  - 7.5. Evaluation Scorecard

## 1. Basic Project Information

## 1.1. Basic Project Information

| Data Field                  | Value                                                                               |
|-----------------------------|-------------------------------------------------------------------------------------|
| Project Name                | VAUGHN WATER COMPANY MEADOW CREEK WELL FACILITY WATER SUPPLY AND TREATMENT FACILITY |
| Construction Start Date     | 8/1/2023                                                                            |
| Operational Year            | 2024                                                                                |
| Lead Agency                 |                                                                                     |
| Land Use Scale              | Project/site                                                                        |
| Analysis Level for Defaults | County                                                                              |
| Windspeed (m/s)             | 2.70                                                                                |
| Precipitation (days)        | 18.0                                                                                |
| Location                    | 35.409130020730274, -119.12123182079463                                             |
| County                      | Kern-San Joaquin                                                                    |
| City                        | Bakersfield                                                                         |
| Air District                | San Joaquin Valley APCD                                                             |
| Air Basin                   | San Joaquin Valley                                                                  |
| TAZ                         | 2895                                                                                |
| EDFZ                        | 5                                                                                   |
| Electric Utility            | Pacific Gas & Electric Company                                                      |
| Gas Utility                 | Southern California Gas                                                             |
| App Version                 | 2022.1.1.13                                                                         |

## 1.2. Land Use Types

| Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------|------|------|-------------|-----------------------|-----------------------------------|------------|-------------|
|                  |      |      |             | - / -                 |                                   |            |             |

| User Defined | 0.00 | User Defined Unit | 0.50 | 884 | 160 | 160 | _ | Water well and |
|--------------|------|-------------------|------|-----|-----|-----|---|----------------|
| Industrial   |      |                   |      |     |     |     |   | treatment      |

## 1.3. User-Selected Emission Reduction Measures by Emissions Sector

| Sector       | #    | Measure Title                          |
|--------------|------|----------------------------------------|
| Natural      | N-2  | Expand Urban Tree Planting             |
| Construction | C-2* | Limit Heavy-Duty Diesel Vehicle Idling |
| Construction | C-13 | Use Low-VOC Paints for Construction    |

\* Qualitative or supporting measure. Emission reductions not included in the mitigated emissions results.

## 2. Emissions Summary

## 2.1. Construction Emissions Compared Against Thresholds

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           |      | <b>`</b> | 1    | <i>.</i> , <i>.</i> , |      |       | · · · |       | <b>,</b> |        | /      |      |       |       |      |      |      |       |
|---------------------------|------|----------|------|-----------------------|------|-------|-------|-------|----------|--------|--------|------|-------|-------|------|------|------|-------|
| Un/Mit.                   | TOG  | ROG      | NOx  | со                    | SO2  | PM10E | PM10D | PM10T | PM2.5E   | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т  | CH4  | N2O  | R    | CO2e  |
| Daily,<br>Summer<br>(Max) |      |          | -    | -                     |      |       | -     | _     | -        | —      | -      | -    | -     | —     | -    | -    | -    | -     |
| Unmit.                    | 1.57 | 1.32     | 12.7 | 11.9                  | 0.02 | 0.60  | 0.13  | 0.67  | 0.55     | 0.03   | 0.57   | —    | 2,113 | 2,113 | 0.08 | 0.03 | 0.69 | 2,125 |
| Mit.                      | 1.57 | 1.32     | 12.7 | 11.9                  | 0.02 | 0.60  | 0.13  | 0.67  | 0.55     | 0.03   | 0.57   | —    | 2,113 | 2,113 | 0.08 | 0.03 | 0.69 | 2,125 |
| %<br>Reduced              | _    | —        | _    | _                     | _    | —     | _     | —     | _        | —      | _      | _    | _     | —     | _    | —    | _    | —     |
| Daily,<br>Winter<br>(Max) |      | -        | -    | -                     | _    | -     | -     |       | _        | -      | -      | -    | -     | -     | -    | -    | -    | _     |
| Unmit.                    | 1.84 | 1.55     | 13.4 | 15.4                  | 0.02 | 0.61  | 0.26  | 0.87  | 0.56     | 0.06   | 0.62   | —    | 2,508 | 2,508 | 0.11 | 0.04 | 0.03 | 2,523 |
| Mit.                      | 1.84 | 1.55     | 13.4 | 15.4                  | 0.02 | 0.61  | 0.26  | 0.87  | 0.56     | 0.06   | 0.62   | _    | 2,508 | 2,508 | 0.11 | 0.04 | 0.03 | 2,523 |
| %<br>Reduced              | _    | —        | _    | _                     | _    | _     | _     | _     | _        | _      | _      | _    | _     | _     | _    | _    | _    | _     |

| Average                       | _    | _    | _    | _    | _       | _    | _    | _    | _    | _       | _    | _    | _   | _   | _       | _       | _    | _    |
|-------------------------------|------|------|------|------|---------|------|------|------|------|---------|------|------|-----|-----|---------|---------|------|------|
| Daily<br>(Max)                |      |      |      |      |         |      |      |      |      |         |      |      |     |     |         |         |      |      |
| Unmit.                        | 0.38 | 0.32 | 2.86 | 3.62 | 0.01    | 0.12 | 0.06 | 0.18 | 0.11 | 0.01    | 0.13 | _    | 674 | 674 | 0.03    | 0.01    | 0.13 | 678  |
| Mit.                          | 0.38 | 0.32 | 2.86 | 3.62 | 0.01    | 0.12 | 0.06 | 0.18 | 0.11 | 0.01    | 0.13 | —    | 674 | 674 | 0.03    | 0.01    | 0.13 | 678  |
| %<br>Reduced                  | —    | —    |      | —    | —       | -    | —    | —    | —    | —       | -    | —    | —   | —   | —       | —       | —    | —    |
| Annual<br>(Max)               | -    | -    | —    | -    | —       | -    | —    | -    | —    | —       | -    | —    | —   | -   | —       | _       | -    | -    |
| Unmit.                        | 0.07 | 0.06 | 0.52 | 0.66 | < 0.005 | 0.02 | 0.01 | 0.03 | 0.02 | < 0.005 | 0.02 | —    | 112 | 112 | < 0.005 | < 0.005 | 0.02 | 112  |
| Mit.                          | 0.07 | 0.06 | 0.52 | 0.66 | < 0.005 | 0.02 | 0.01 | 0.03 | 0.02 | < 0.005 | 0.02 | —    | 112 | 112 | < 0.005 | < 0.005 | 0.02 | 112  |
| %<br>Reduced                  | _    | -    | —    | _    | _       | -    | —    | —    | —    | —       | -    | —    | —   | -   | —       | —       | —    | -    |
| Exceeds<br>(Daily<br>Max)     | —    | _    | -    | -    | _       |      |      | _    | _    | _       | _    | _    | -   | _   |         | -       |      | -    |
| Threshol<br>d                 | -    | -    | —    | -    | —       | -    | —    | -    | —    | —       | -    | -    | —   | -   | —       | —       | -    | -    |
| Unmit.                        | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Mit.                          | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Exceeds<br>(Average<br>Daily) | _    | _    | -    | _    | _       | _    | _    | _    | -    | -       | -    | _    | -   | -   | _       | -       | _    | -    |
| Threshol<br>d                 | -    | _    | —    | —    | -       | -    | -    | -    | -    | -       | -    | _    | —   | _   | -       | -       | -    | -    |
| Unmit.                        | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Mit.                          | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Exceeds<br>(Annual)           | -    | _    | _    | _    | -       | -    | -    | -    | -    | _       | -    | _    | _   | _   | -       | _       | -    | -    |
| Threshol<br>d                 | -    | 0.00 | 0.07 | 0.50 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 107 | 107 | 0.00    | 0.00    | 0.00 | 0.00 |
| Unmit.                        | _    | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |

## 2.4. Operations Emissions Compared Against Thresholds

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           |      | · ·     | · · · · · | <b>J</b> , <b>J</b> |          |          |          |          | , <b>,</b> , |          | ,        |      |       |      |      |         |      |      |
|---------------------------|------|---------|-----------|---------------------|----------|----------|----------|----------|--------------|----------|----------|------|-------|------|------|---------|------|------|
| Un/Mit.                   | TOG  | ROG     | NOx       | со                  | SO2      | PM10E    | PM10D    | PM10T    | PM2.5E       | PM2.5D   | PM2.5T   | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R    | CO2e |
| Daily,<br>Summer<br>(Max) | —    | —       | —         | _                   | —        | —        | -        | —        | —            | —        | —        |      | —     | —    | —    | -       | —    | —    |
| Unmit.                    | 0.00 | 0.02    | > -0.005  | 0.00                | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005     | > -0.005 | > -0.005 | 0.00 | 326   | 326  | 0.05 | 0.01    | 0.00 | 329  |
| Mit.                      | 0.00 | 0.02    | 0.00      | 0.00                | 0.00     | 0.00     | 0.00     | 0.00     | 0.00         | 0.00     | 0.00     | 0.00 | 335   | 335  | 0.05 | 0.01    | 0.00 | 339  |
| %<br>Reduced              | —    | -16%    | 100%      | _                   | 100%     | 100%     | 100%     | 100%     | 100%         | 100%     | 100%     | _    | -3%   | -3%  | —    | —       | —    | -3%  |
| Daily,<br>Winter<br>(Max) |      |         |           | _                   |          | _        | -        | —        | —            | _        | —        |      |       |      | _    | -       | _    |      |
| Unmit.                    | 0.00 | 0.02    | > -0.005  | 0.00                | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005     | > -0.005 | > -0.005 | 0.00 | 326   | 326  | 0.05 | 0.01    | 0.00 | 329  |
| Mit.                      | 0.00 | 0.02    | 0.00      | 0.00                | 0.00     | 0.00     | 0.00     | 0.00     | 0.00         | 0.00     | 0.00     | 0.00 | 335   | 335  | 0.05 | 0.01    | 0.00 | 339  |
| %<br>Reduced              | —    | -16%    | 100%      | —                   | 100%     | 100%     | 100%     | 100%     | 100%         | 100%     | 100%     | —    | -3%   | -3%  | —    |         |      | -3%  |
| Average<br>Daily<br>(Max) | _    | _       | _         | -                   | -        | _        | -        | _        | _            | _        | -        | _    | _     | -    | -    | -       | -    | -    |
| Unmit.                    | 0.00 | 0.02    | > -0.005  | 0.00                | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005     | > -0.005 | > -0.005 | 0.00 | 326   | 326  | 0.05 | 0.01    | 0.00 | 329  |
| Mit.                      | 0.00 | 0.02    | 0.00      | 0.00                | 0.00     | 0.00     | 0.00     | 0.00     | 0.00         | 0.00     | 0.00     | 0.00 | 335   | 335  | 0.05 | 0.01    | 0.00 | 339  |
| %<br>Reduced              | _    | -16%    | 100%      | -                   | 100%     | 100%     | 100%     | 100%     | 100%         | 100%     | 100%     | -    | -3%   | -3%  | -    | —       | _    | -3%  |
| Annual<br>(Max)           | _    | —       | _         | _                   | _        | _        | _        | _        | _            | _        | _        | -    | _     | —    | -    | —       | -    | -    |
| Unmit.                    | 0.00 | < 0.005 | > -0.005  | 0.00                | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005     | > -0.005 | > -0.005 | 0.00 | 54.0  | 54.0 | 0.01 | < 0.005 | 0.00 | 54.5 |
| Mit.                      | 0.00 | < 0.005 | 0.00      | 0.00                | 0.00     | 0.00     | 0.00     | 0.00     | 0.00         | 0.00     | 0.00     | 0.00 | 55.5  | 55.5 | 0.01 | < 0.005 | 0.00 | 56.1 |

| %       | _ | -16% | 100% | _ | 100% | 100% | 100% | 100% | 100% | 100% | 100% | _ | -3% | -3% | _ | _ | _ | -3% |
|---------|---|------|------|---|------|------|------|------|------|------|------|---|-----|-----|---|---|---|-----|
| Reduced |   |      |      |   |      |      |      |      |      |      |      |   |     |     |   |   |   |     |

## 6. Climate Risk Detailed Report

## 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 2              | 2                 | 0                       | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | 5              | 2                 | 0                       | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 5              | 1                 | 4                       | 2                   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

## 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 2              | 1                 | 2                       | 2                   |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | 5              | 1                 | 2                       | 3                   |

| Snowpack Reduction      | N/A | N/A | N/A | N/A |
|-------------------------|-----|-----|-----|-----|
| Air Quality Degradation | 5   | 1   | 6   | N/A |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

## 7. Health and Equity Details

## 7.3. Overall Health & Equity Scores

| Metric                                                                              | Result for Project Census Tract |
|-------------------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                                  | 12.0                            |
| Healthy Places Index Score for Project Location (b)                                 | 68.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No                              |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No                              |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No                              |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

## 7.5. Evaluation Scorecard

This table summarizes the points earned for each health and equity measure category, and the total possible points for each category. If N/A is selected for any measure(s), the total possible points in that category are reduced accordingly. The points for each category are then weighted on a 15-point scale to determine the score per category and a total weighted score.

| Category                       | Number of Applicable Measures | Total Points Earned by Applicable<br>Measures | Max Possible Points | Weighted Score |
|--------------------------------|-------------------------------|-----------------------------------------------|---------------------|----------------|
| Community-Centered Development | 5.00                          | 3.00                                          | 25.0                | 1.71           |
| Inclusive Engagement           | 6.00                          | 0.00                                          | 30.0                | 0.00           |
| Accountability                 | 5.00                          | 0.00                                          | 25.0                | 0.00           |
| Construction Equity            | 6.00                          | 0.00                                          | 30.0                | 0.00           |
| Public Health and Air Quality  | 4.00                          | 0.00                                          | 20.0                | 0.00           |

| Inclusive Economics & Prosperity | 4.00 | 0.00 | 20.0 | 0.00 |
|----------------------------------|------|------|------|------|
| Inclusive Communities            | 4.00 | 0.00 | 20.0 | 0.00 |
| Total                            | 34.0 | 3.00 | 170  | 1.71 |

Based on the weighted score of 2 out of a total 170 possible points, your project qualifies for the Acorn equity award level. Organization(s) consulted by the user to complete the Health & Equity Scorecard: DJA



## Table of Contents

- 1. Basic Project Information
  - 1.1. Basic Project Information
  - 1.2. Land Use Types
  - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
  - 2.1. Construction Emissions Compared Against Thresholds
  - 2.2. Construction Emissions by Year, Unmitigated
  - 2.3. Construction Emissions by Year, Mitigated
  - 2.4. Operations Emissions Compared Against Thresholds
  - 2.5. Operations Emissions by Sector, Unmitigated
  - 2.6. Operations Emissions by Sector, Mitigated
- 3. Construction Emissions Details
  - 3.1. Demolition (2024) Unmitigated

- 3.2. Demolition (2024) Mitigated
- 3.3. Site Preparation (2023) Unmitigated
- 3.4. Site Preparation (2023) Mitigated
- 3.5. Grading (2023) Unmitigated
- 3.6. Grading (2023) Mitigated
- 3.7. Grading (2024) Unmitigated
- 3.8. Grading (2024) Mitigated
- 3.9. Building Construction (2023) Unmitigated
- 3.10. Building Construction (2023) Mitigated
- 3.11. Building Construction (2023) Unmitigated
- 3.12. Building Construction (2023) Mitigated
- 3.13. Building Construction (2024) Unmitigated
- 3.14. Building Construction (2024) Mitigated
- 3.15. Building Construction (2024) Unmitigated
- 3.16. Building Construction (2024) Mitigated
- 3.17. Building Construction (2024) Unmitigated
- 3.18. Building Construction (2024) Mitigated

- 3.19. Building Construction (2024) Unmitigated
- 3.20. Building Construction (2024) Mitigated
- 3.21. Building Construction (2024) Unmitigated
- 3.22. Building Construction (2024) Mitigated
- 3.23. Building Construction (2024) Unmitigated
- 3.24. Building Construction (2024) Mitigated
- 3.25. Building Construction (2024) Unmitigated
- 3.26. Building Construction (2024) Mitigated
- 3.27. Paving (2024) Unmitigated
- 3.28. Paving (2024) Mitigated
- 3.29. Paving (2025) Unmitigated
- 3.30. Paving (2025) Mitigated
- 3.31. Architectural Coating (2025) Unmitigated
- 3.32. Architectural Coating (2025) Mitigated
- 3.33. Trenching (2024) Unmitigated
- 3.34. Trenching (2024) Mitigated
- 3.35. Trenching (2024) Unmitigated

- 3.36. Trenching (2024) Mitigated
- 4. Operations Emissions Details
  - 4.1. Mobile Emissions by Land Use
    - 4.1.1. Unmitigated
    - 4.1.2. Mitigated
  - 4.2. Energy
    - 4.2.1. Electricity Emissions By Land Use Unmitigated
    - 4.2.2. Electricity Emissions By Land Use Mitigated
    - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
    - 4.2.4. Natural Gas Emissions By Land Use Mitigated
  - 4.3. Area Emissions by Source
    - 4.3.2. Unmitigated
    - 4.3.1. Mitigated
  - 4.4. Water Emissions by Land Use
    - 4.4.2. Unmitigated
    - 4.4.1. Mitigated
  - 4.5. Waste Emissions by Land Use

#### 4.5.2. Unmitigated

#### 4.5.1. Mitigated

- 4.6. Refrigerant Emissions by Land Use
  - 4.6.1. Unmitigated
  - 4.6.2. Mitigated
- 4.7. Offroad Emissions By Equipment Type
  - 4.7.1. Unmitigated
  - 4.7.2. Mitigated
- 4.8. Stationary Emissions By Equipment Type
  - 4.8.1. Unmitigated
  - 4.8.2. Mitigated
- 4.9. User Defined Emissions By Equipment Type
  - 4.9.1. Unmitigated
  - 4.9.2. Mitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
  - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
  - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated

- 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
- 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
- 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
  - 5.1. Construction Schedule
  - 5.2. Off-Road Equipment
    - 5.2.1. Unmitigated
    - 5.2.2. Mitigated
  - 5.3. Construction Vehicles
    - 5.3.1. Unmitigated
    - 5.3.2. Mitigated
  - 5.4. Vehicles
    - 5.4.1. Construction Vehicle Control Strategies
  - 5.5. Architectural Coatings
  - 5.6. Dust Mitigation
    - 5.6.1. Construction Earthmoving Activities

- 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
  - 5.9.1. Unmitigated
  - 5.9.2. Mitigated
- 5.10. Operational Area Sources
  - 5.10.1. Hearths
    - 5.10.1.1. Unmitigated
    - 5.10.1.2. Mitigated
  - 5.10.2. Architectural Coatings
  - 5.10.3. Landscape Equipment
  - 5.10.4. Landscape Equipment Mitigated
- 5.11. Operational Energy Consumption
  - 5.11.1. Unmitigated
  - 5.11.2. Mitigated
- 5.12. Operational Water and Wastewater Consumption

#### 5.12.1. Unmitigated

#### 5.12.2. Mitigated

#### 5.13. Operational Waste Generation

### 5.13.1. Unmitigated

## 5.13.2. Mitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

## 5.14.1. Unmitigated

## 5.14.2. Mitigated

5.15. Operational Off-Road Equipment

## 5.15.1. Unmitigated

## 5.15.2. Mitigated

## 5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

## 5.16.2. Process Boilers

## 5.17. User Defined

## 5.18. Vegetation

## 5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

#### 5.18.1. Biomass Cover Type

- 5.18.1.1. Unmitigated
- 5.18.1.2. Mitigated

#### 5.18.2. Sequestration

#### 5.18.2.1. Unmitigated

5.18.2.2. Mitigated

#### 6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures
  - 6.4.1. Temperature and Extreme Heat
  - 6.4.2. Drought
  - 6.4.3. Air Quality Degradation
- 7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

## 1. Basic Project Information

## 1.1. Basic Project Information

| Data Field                  | Value                                                                               |
|-----------------------------|-------------------------------------------------------------------------------------|
| Project Name                | VAUGHN WATER COMPANY MEADOW CREEK WELL FACILITY WATER SUPPLY AND TREATMENT FACILITY |
| Construction Start Date     | 8/1/2023                                                                            |
| Operational Year            | 2024                                                                                |
| Lead Agency                 |                                                                                     |
| Land Use Scale              | Project/site                                                                        |
| Analysis Level for Defaults | County                                                                              |
| Windspeed (m/s)             | 2.70                                                                                |
| Precipitation (days)        | 18.0                                                                                |
| Location                    | 35.409130020730274, -119.12123182079463                                             |
| County                      | Kern-San Joaquin                                                                    |
| City                        | Bakersfield                                                                         |
| Air District                | San Joaquin Valley APCD                                                             |
| Air Basin                   | San Joaquin Valley                                                                  |
| TAZ                         | 2895                                                                                |
| EDFZ                        | 5                                                                                   |
| Electric Utility            | Pacific Gas & Electric Company                                                      |
| Gas Utility                 | Southern California Gas                                                             |
| App Version                 | 2022.1.1.13                                                                         |

## 1.2. Land Use Types

| Land Use Subtype | Size | Unit | Lot Acreage | Building Area (sq ft) | Special Landscape<br>Area (sq ft) | Population | Description |
|------------------|------|------|-------------|-----------------------|-----------------------------------|------------|-------------|
|                  |      |      |             | 11 / 126              |                                   |            |             |

| User Defined | 0.00 | User Defined Unit | 0.50 | 884 | 160 | 160 | _ | Water well and |
|--------------|------|-------------------|------|-----|-----|-----|---|----------------|
| Industrial   |      |                   |      |     |     |     |   | treatment      |

## 1.3. User-Selected Emission Reduction Measures by Emissions Sector

| Sector       | #    | Measure Title                          |
|--------------|------|----------------------------------------|
| Natural      | N-2  | Expand Urban Tree Planting             |
| Construction | C-2* | Limit Heavy-Duty Diesel Vehicle Idling |
| Construction | C-13 | Use Low-VOC Paints for Construction    |

\* Qualitative or supporting measure. Emission reductions not included in the mitigated emissions results.

## 2. Emissions Summary

## 2.1. Construction Emissions Compared Against Thresholds

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           |      | <b>`</b> | 1    | <i>.</i> , <i>.</i> , |      |       | · · · |       | <b>,</b> |        | /      |      |       |       |      |      |      |       |
|---------------------------|------|----------|------|-----------------------|------|-------|-------|-------|----------|--------|--------|------|-------|-------|------|------|------|-------|
| Un/Mit.                   | TOG  | ROG      | NOx  | со                    | SO2  | PM10E | PM10D | PM10T | PM2.5E   | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т  | CH4  | N2O  | R    | CO2e  |
| Daily,<br>Summer<br>(Max) |      |          | -    | -                     |      |       | -     | -     | -        | —      | -      | -    | -     | —     | -    | -    | -    | -     |
| Unmit.                    | 1.57 | 1.32     | 12.7 | 11.9                  | 0.02 | 0.60  | 0.13  | 0.67  | 0.55     | 0.03   | 0.57   | —    | 2,113 | 2,113 | 0.08 | 0.03 | 0.69 | 2,125 |
| Mit.                      | 1.57 | 1.32     | 12.7 | 11.9                  | 0.02 | 0.60  | 0.13  | 0.67  | 0.55     | 0.03   | 0.57   | —    | 2,113 | 2,113 | 0.08 | 0.03 | 0.69 | 2,125 |
| %<br>Reduced              | _    | —        | _    | _                     | _    | —     | _     | _     | _        | —      | _      | —    | _     | —     | _    | —    | _    | —     |
| Daily,<br>Winter<br>(Max) |      | -        | -    | -                     | _    | -     | -     | -     | _        | -      | -      | -    | -     | -     | -    | -    | -    | —     |
| Unmit.                    | 1.84 | 1.55     | 13.4 | 15.4                  | 0.02 | 0.61  | 0.26  | 0.87  | 0.56     | 0.06   | 0.62   | _    | 2,508 | 2,508 | 0.11 | 0.04 | 0.03 | 2,523 |
| Mit.                      | 1.84 | 1.55     | 13.4 | 15.4                  | 0.02 | 0.61  | 0.26  | 0.87  | 0.56     | 0.06   | 0.62   | _    | 2,508 | 2,508 | 0.11 | 0.04 | 0.03 | 2,523 |
| %<br>Reduced              | _    | —        | _    | _                     | _    | _     | _     | _     | _        | _      | _      | _    | _     | _     | _    | _    | _    | —     |

| Average<br>Daily              | _    | —    | _    | _    | _       | -    | _    | _    | _    | _       | -    | —    | -   | —   | -       | -       | -    | _    |
|-------------------------------|------|------|------|------|---------|------|------|------|------|---------|------|------|-----|-----|---------|---------|------|------|
| (Max)                         |      |      |      |      |         |      |      |      |      |         |      |      |     |     |         |         |      |      |
| Unmit.                        | 0.38 | 0.32 | 2.86 | 3.62 | 0.01    | 0.12 | 0.06 | 0.18 | 0.11 | 0.01    | 0.13 | —    | 674 | 674 | 0.03    | 0.01    | 0.13 | 678  |
| Mit.                          | 0.38 | 0.32 | 2.86 | 3.62 | 0.01    | 0.12 | 0.06 | 0.18 | 0.11 | 0.01    | 0.13 | —    | 674 | 674 | 0.03    | 0.01    | 0.13 | 678  |
| %<br>Reduced                  | _    |      | —    | _    |         |      | —    | _    | —    |         |      |      | —   |     | —       | —       | —    | —    |
| Annual<br>(Max)               | -    | —    | -    | -    | —       | -    | —    | —    | —    | —       | -    | —    | —   | —   | —       | —       | -    | —    |
| Unmit.                        | 0.07 | 0.06 | 0.52 | 0.66 | < 0.005 | 0.02 | 0.01 | 0.03 | 0.02 | < 0.005 | 0.02 | _    | 112 | 112 | < 0.005 | < 0.005 | 0.02 | 112  |
| Mit.                          | 0.07 | 0.06 | 0.52 | 0.66 | < 0.005 | 0.02 | 0.01 | 0.03 | 0.02 | < 0.005 | 0.02 | _    | 112 | 112 | < 0.005 | < 0.005 | 0.02 | 112  |
| %<br>Reduced                  | -    | -    | -    | -    | —       | -    | -    | -    | —    | -       | -    | —    | —   | —   | -       | -       | -    | —    |
| Exceeds<br>(Daily<br>Max)     | -    | -    | -    | -    | _       |      | -    | -    | -    | -       | -    |      | -   | -   | _       | -       | -    | -    |
| Threshol<br>d                 | -    | —    | -    | -    | —       | -    | —    | -    | —    | —       | -    | —    | —   | —   | —       | —       | -    | —    |
| Unmit.                        | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Mit.                          | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Exceeds<br>(Average<br>Daily) | -    | -    |      |      | _       |      | _    | _    | -    | -       | -    | _    | -   | _   | _       | -       | -    | -    |
| Threshol<br>d                 | -    | -    | -    | -    | -       | -    | -    | —    | -    | -       | -    | —    | _   | —   | -       | -       | -    | _    |
| Unmit.                        | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Mit.                          | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |
| Exceeds<br>(Annual)           | -    | -    | -    | -    | _       | -    | -    | -    | _    | _       | -    | _    | _   | -   | -       | -       | -    | -    |
| Threshol<br>d                 | -    | 0.00 | 0.07 | 0.50 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 | 107 | 107 | 0.00    | 0.00    | 0.00 | 0.00 |
| Unmit.                        | _    | Yes  | Yes  | Yes  | Yes     | Yes  | Yes  | Yes  | Yes  | Yes     | Yes  | _    | Yes | Yes | Yes     | Yes     | Yes  | Yes  |

#### 2.2. Construction Emissions by Year, Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                            |         | ( ) · · · · | ,    | .,   |         | ,       | \       |         | , <b>,</b> , |         | ,       |      |       |       |         |         |         |       |
|----------------------------|---------|-------------|------|------|---------|---------|---------|---------|--------------|---------|---------|------|-------|-------|---------|---------|---------|-------|
| Year                       | TOG     | ROG         | NOx  | СО   | SO2     | PM10E   | PM10D   | PM10T   | PM2.5E       | PM2.5D  | PM2.5T  | BCO2 | NBCO2 | CO2T  | CH4     | N2O     | R       | CO2e  |
| Daily -<br>Summer<br>(Max) | -       | -           | -    |      |         | -       | -       | -       | -            | -       | -       | -    | -     | —     | -       | -       | _       | _     |
| 2023                       | 1.57    | 1.32        | 12.7 | 11.9 | 0.02    | 0.60    | 0.11    | 0.67    | 0.55         | 0.03    | 0.57    | _    | 1,829 | 1,829 | 0.07    | 0.03    | 0.64    | 1,838 |
| 2024                       | 1.06    | 0.89        | 8.49 | 10.7 | 0.02    | 0.34    | 0.13    | 0.47    | 0.32         | 0.03    | 0.35    | _    | 2,113 | 2,113 | 0.08    | 0.03    | 0.69    | 2,125 |
| Daily -<br>Winter<br>(Max) | _       | -           | _    | _    | _       | —       | -       | -       | _            | -       | _       | _    | -     | _     | _       | -       | _       | _     |
| 2023                       | 0.43    | 0.37        | 3.48 | 5.55 | 0.01    | 0.16    | 0.11    | 0.27    | 0.14         | 0.03    | 0.17    | _    | 936   | 936   | 0.04    | 0.02    | 0.02    | 944   |
| 2024                       | 1.84    | 1.55        | 13.4 | 15.4 | 0.02    | 0.61    | 0.26    | 0.87    | 0.56         | 0.06    | 0.62    | —    | 2,508 | 2,508 | 0.11    | 0.04    | 0.03    | 2,523 |
| 2025                       | 0.65    | 0.66        | 3.91 | 5.08 | 0.01    | 0.16    | 0.14    | 0.30    | 0.15         | 0.03    | 0.18    | —    | 801   | 801   | 0.03    | 0.01    | 0.01    | 805   |
| Average<br>Daily           | _       | _           | —    | -    | -       | —       | _       | _       | _            | —       | _       | -    | —     | _     | —       | —       | -       | -     |
| 2023                       | 0.18    | 0.15        | 1.40 | 1.77 | < 0.005 | 0.06    | 0.03    | 0.09    | 0.06         | 0.01    | 0.07    | _    | 296   | 296   | 0.01    | 0.01    | 0.08    | 298   |
| 2024                       | 0.38    | 0.32        | 2.86 | 3.62 | 0.01    | 0.12    | 0.06    | 0.18    | 0.11         | 0.01    | 0.13    | _    | 674   | 674   | 0.03    | 0.01    | 0.13    | 678   |
| 2025                       | 0.02    | 0.03        | 0.15 | 0.17 | < 0.005 | 0.01    | < 0.005 | 0.01    | 0.01         | < 0.005 | 0.01    | _    | 24.7  | 24.7  | < 0.005 | < 0.005 | < 0.005 | 24.8  |
| Annual                     | _       | _           | _    | _    | _       | _       | _       | -       | _            | _       | _       | _    | _     | _     | _       | _       | _       | _     |
| 2023                       | 0.03    | 0.03        | 0.25 | 0.32 | < 0.005 | 0.01    | 0.01    | 0.02    | 0.01         | < 0.005 | 0.01    | _    | 48.9  | 48.9  | < 0.005 | < 0.005 | 0.01    | 49.3  |
| 2024                       | 0.07    | 0.06        | 0.52 | 0.66 | < 0.005 | 0.02    | 0.01    | 0.03    | 0.02         | < 0.005 | 0.02    | _    | 112   | 112   | < 0.005 | < 0.005 | 0.02    | 112   |
| 2025                       | < 0.005 | 0.01        | 0.03 | 0.03 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005      | < 0.005 | < 0.005 | _    | 4.10  | 4.10  | < 0.005 | < 0.005 | < 0.005 | 4.11  |

### 2.3. Construction Emissions by Year, Mitigated

| Year | TOG | ROG | NOx | co | SO2 | PM10F  | PM10D | PM10T | PM2 5F   | PM2 5D    | PM2 5T    | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R  | CO2e |
|------|-----|-----|-----|----|-----|--------|-------|-------|----------|-----------|-----------|------|-------|------|------|------|----|------|
| Teal | 100 | ROO | NOA | 00 | 302 | TWITCE |       |       | T WIZ.JL | 1 1012.50 | 1 1012.01 | 0002 | NDCOZ | 0021 | 0114 | 1120 | IX | 0026 |

| Daily -<br>Summer<br>(Max) | _       |         | _    | -    | _       |         | -       | -       | -       | -       |         | _ | -     |       | _       | -       | _       | _     |
|----------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|---------|-------|
| 2023                       | 1.57    | 1.32    | 12.7 | 11.9 | 0.02    | 0.60    | 0.11    | 0.67    | 0.55    | 0.03    | 0.57    | - | 1,829 | 1,829 | 0.07    | 0.03    | 0.64    | 1,838 |
| 2024                       | 1.06    | 0.89    | 8.49 | 10.7 | 0.02    | 0.34    | 0.13    | 0.47    | 0.32    | 0.03    | 0.35    | - | 2,113 | 2,113 | 0.08    | 0.03    | 0.69    | 2,125 |
| Daily -<br>Winter<br>(Max) | -       |         | -    | -    | _       | _       | _       | _       | _       | -       | _       | - | -     | _     | _       | _       | _       | -     |
| 2023                       | 0.43    | 0.37    | 3.48 | 5.55 | 0.01    | 0.16    | 0.11    | 0.27    | 0.14    | 0.03    | 0.17    | _ | 936   | 936   | 0.04    | 0.02    | 0.02    | 944   |
| 2024                       | 1.84    | 1.55    | 13.4 | 15.4 | 0.02    | 0.61    | 0.26    | 0.87    | 0.56    | 0.06    | 0.62    | - | 2,508 | 2,508 | 0.11    | 0.04    | 0.03    | 2,523 |
| 2025                       | 0.65    | 0.60    | 3.91 | 5.08 | 0.01    | 0.16    | 0.14    | 0.30    | 0.15    | 0.03    | 0.18    | - | 801   | 801   | 0.03    | 0.01    | 0.01    | 805   |
| Average<br>Daily           | _       | -       | -    | —    | -       | -       | -       | _       | -       | -       | -       | - | _     | -     | _       | -       | -       | -     |
| 2023                       | 0.18    | 0.15    | 1.40 | 1.77 | < 0.005 | 0.06    | 0.03    | 0.09    | 0.06    | 0.01    | 0.07    | _ | 296   | 296   | 0.01    | 0.01    | 0.08    | 298   |
| 2024                       | 0.38    | 0.32    | 2.86 | 3.62 | 0.01    | 0.12    | 0.06    | 0.18    | 0.11    | 0.01    | 0.13    | _ | 674   | 674   | 0.03    | 0.01    | 0.13    | 678   |
| 2025                       | 0.02    | 0.03    | 0.15 | 0.17 | < 0.005 | 0.01    | < 0.005 | 0.01    | 0.01    | < 0.005 | 0.01    | _ | 24.7  | 24.7  | < 0.005 | < 0.005 | < 0.005 | 24.8  |
| Annual                     | _       | _       | _    | _    | _       | -       | _       | _       | _       | _       | -       | _ | -     | _     | _       | _       | _       | _     |
| 2023                       | 0.03    | 0.03    | 0.25 | 0.32 | < 0.005 | 0.01    | 0.01    | 0.02    | 0.01    | < 0.005 | 0.01    | _ | 48.9  | 48.9  | < 0.005 | < 0.005 | 0.01    | 49.3  |
| 2024                       | 0.07    | 0.06    | 0.52 | 0.66 | < 0.005 | 0.02    | 0.01    | 0.03    | 0.02    | < 0.005 | 0.02    | _ | 112   | 112   | < 0.005 | < 0.005 | 0.02    | 112   |
| 2025                       | < 0.005 | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 4.10  | 4.10  | < 0.005 | < 0.005 | < 0.005 | 4.11  |

## 2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Un/Mit.                   | TOG  | ROG  | NOx      | со   | SO2      | PM10E    | PM10D    | PM10T | PM2.5E   | PM2.5D   | PM2.5T   | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R    | CO2e |
|---------------------------|------|------|----------|------|----------|----------|----------|-------|----------|----------|----------|------|-------|------|------|------|------|------|
| Daily,<br>Summer<br>(Max) |      | -    | -        | -    | -        |          |          |       |          |          |          |      |       |      |      |      | —    | _    |
| Unmit.                    | 0.00 | 0.02 | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | 0.00 | 326   | 326  | 0.05 | 0.01 | 0.00 | 329  |
| Mit.                      | 0.00 | 0.02 | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00  | 0.00     | 0.00     | 0.00     | 0.00 | 335   | 335  | 0.05 | 0.01 | 0.00 | 339  |

| %<br>Reduced              | _    | -16%    | 100%     | -    | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | -    | -3%  | -3%  | -    | _       | -    | -3%  |
|---------------------------|------|---------|----------|------|----------|----------|----------|----------|----------|----------|----------|------|------|------|------|---------|------|------|
| Daily,<br>Winter<br>(Max) |      | _       | _        | -    | -        | _        | -        | -        | -        | _        | -        | -    | -    | _    | _    | -       | -    | -    |
| Unmit.                    | 0.00 | 0.02    | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005 | > -0.005 | > -0.005 | 0.00 | 326  | 326  | 0.05 | 0.01    | 0.00 | 329  |
| Mit.                      | 0.00 | 0.02    | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00 | 335  | 335  | 0.05 | 0.01    | 0.00 | 339  |
| %<br>Reduced              | —    | -16%    | 100%     | -    | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | -    | -3%  | -3%  | -    | —       | -    | -3%  |
| Average<br>Daily<br>(Max) |      | _       |          | _    | _        | _        | _        | _        | _        | _        | -        | _    |      | -    |      | -       | _    | -    |
| Unmit.                    | 0.00 | 0.02    | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005 | > -0.005 | > -0.005 | 0.00 | 326  | 326  | 0.05 | 0.01    | 0.00 | 329  |
| Mit.                      | 0.00 | 0.02    | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00 | 335  | 335  | 0.05 | 0.01    | 0.00 | 339  |
| %<br>Reduced              | _    | -16%    | 100%     | -    | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | -    | -3%  | -3%  | -    | -       | -    | -3%  |
| Annual<br>(Max)           | _    | -       | _        | -    | _        | _        | _        | -        | -        | _        | _        | -    | -    | -    | -    | -       | _    | _    |
| Unmit.                    | 0.00 | < 0.005 | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | 0.00 | 54.0 | 54.0 | 0.01 | < 0.005 | 0.00 | 54.5 |
| Mit.                      | 0.00 | < 0.005 | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00 | 55.5 | 55.5 | 0.01 | < 0.005 | 0.00 | 56.1 |
| %<br>Reduced              | _    | -16%    | 100%     | -    | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | 100%     | -    | -3%  | -3%  | -    | _       | -    | -3%  |

## 2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Sector                    | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R    | CO2e |
|---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------|
| Daily,<br>Summer<br>(Max) | _    | —    | _    | _    | —    | _     | —     | _     | —      | —      | —      | —    | —     | _    | —    | —    | _    | -    |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Area                      | _    | 0.02 |      | _    | _    |       |       |       | _      | _      | _      | _    |       |      | _    | _    | _    | _    |

| Energy                    | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | _        | 0.00  | 0.00     | _        | 0.00     | _    | 335   | 335   | 0.05    | 0.01    | _    | 339   |
|---------------------------|------|----------|----------|------|----------|----------|----------|-------|----------|----------|----------|------|-------|-------|---------|---------|------|-------|
| Water                     | _    | _        | _        | _    | _        | _        | _        | _     | _        | _        | _        | 0.00 | 0.01  | 0.01  | < 0.005 | < 0.005 | _    | 0.01  |
| Waste                     | _    | _        | _        | _    | _        | _        | _        | _     | _        | _        | _        | 0.00 | 0.00  | 0.00  | 0.00    | 0.00    | _    | 0.00  |
| Vegetatio<br>n            | _    | > -0.005 | > -0.005 | -    | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | -    | -9.43 | -9.43 | -       | -       | -    | -9.43 |
| Total                     | 0.00 | 0.02     | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | 0.00 | 326   | 326   | 0.05    | 0.01    | 0.00 | 329   |
| Daily,<br>Winter<br>(Max) |      | —        | _        | _    | _        | _        | _        | _     | _        | _        | _        | _    | -     | _     | -       | —       | _    | —     |
| Mobile                    | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00  | 0.00     | 0.00     | 0.00     | -    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | _    | 0.02     | —        | _    | _        | —        | —        | _     | —        | _        | _        | _    | _     | _     | _       | _       | —    | _     |
| Energy                    | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | _        | 0.00  | 0.00     | _        | 0.00     | -    | 335   | 335   | 0.05    | 0.01    | -    | 339   |
| Water                     | —    | —        | —        | —    | —        | —        | —        | _     | —        | —        | —        | 0.00 | 0.01  | 0.01  | < 0.005 | < 0.005 | —    | 0.01  |
| Waste                     | —    | —        | —        | —    | —        | —        | —        | —     | —        | —        | —        | 0.00 | 0.00  | 0.00  | 0.00    | 0.00    | —    | 0.00  |
| Vegetatio<br>n            | _    | > -0.005 | > -0.005 | -    | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | -    | -9.43 | -9.43 | _       | -       | -    | -9.43 |
| Total                     | 0.00 | 0.02     | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | 0.00 | 326   | 326   | 0.05    | 0.01    | 0.00 | 329   |
| Average<br>Daily          | _    | —        | -        | -    | —        | -        | -        | -     | —        | -        | -        | -    | —     | -     | —       | -       | -    | —     |
| Mobile                    | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00  | 0.00     | 0.00     | 0.00     | —    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      | —    | 0.02     | —        | —    | —        | —        | —        | —     | —        | —        | —        | —    | —     | —     | —       | —       | —    | —     |
| Energy                    | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | —        | 0.00  | 0.00     | —        | 0.00     | —    | 335   | 335   | 0.05    | 0.01    | —    | 339   |
| Water                     | —    | —        | —        | —    | _        | —        | —        | _     | —        | —        | —        | 0.00 | 0.01  | 0.01  | < 0.005 | < 0.005 | —    | 0.01  |
| Waste                     | —    | —        | —        | —    | —        | —        | —        | —     | —        | —        | —        | 0.00 | 0.00  | 0.00  | 0.00    | 0.00    | —    | 0.00  |
| Vegetatio<br>n            | —    | > -0.005 | > -0.005 | —    | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | —    | -9.43 | -9.43 | —       | -       | —    | -9.43 |
| Total                     | 0.00 | 0.02     | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | -0.01 | > -0.005 | > -0.005 | > -0.005 | 0.00 | 326   | 326   | 0.05    | 0.01    | 0.00 | 329   |
| Annual                    | _    | _        | _        | _    | _        | _        | _        | _     | _        | _        | _        | _    | _     | _     | -       | _       | -    | _     |
| Mobile                    | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | 0.00     | 0.00  | 0.00     | 0.00     | 0.00     | _    | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Area                      |      | < 0.005  | _        | _    | _        | _        | _        | _     | _        | _        | _        | _    | _     | _     | _       | _       | _    | _     |

| Energy         | 0.00 | 0.00     | 0.00     | 0.00 | 0.00     | 0.00     | _        | 0.00     | 0.00     | _        | 0.00     | _    | 55.5    | 55.5    | 0.01    | < 0.005 | _    | 56.1    |
|----------------|------|----------|----------|------|----------|----------|----------|----------|----------|----------|----------|------|---------|---------|---------|---------|------|---------|
| Water          | —    | —        | —        | —    | —        | —        | —        | —        | —        | —        | —        | 0.00 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | —    | < 0.005 |
| Waste          | —    | —        | —        | —    | —        | —        | —        | —        | —        | —        | —        | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | —    | 0.00    |
| Vegetatio<br>n | _    | > -0.005 | > -0.005 | _    | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _    | -1.56   | -1.56   | _       | _       | _    | -1.56   |
| Total          | 0.00 | < 0.005  | > -0.005 | 0.00 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | 0.00 | 54.0    | 54.0    | 0.01    | < 0.005 | 0.00 | 54.5    |

## 2.6. Operations Emissions by Sector, Mitigated

| Sector                    | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E |      | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|---------------------------|------|------|------|------|------|-------|-------|-------|--------|------|--------|------|-------|------|---------|---------|------|------|
| Daily,<br>Summer<br>(Max) | -    | -    | -    | _    | —    | -     | -     | _     | _      | -    | -      | _    | -     | —    | -       | _       | —    | -    |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Area                      | —    | 0.02 | —    | -    | -    | —     | —     | —     | —      | —    | —      | —    | —     | —    | —       | —       | -    | —    |
| Energy                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | —    | 0.00   | —    | 335   | 335  | 0.05    | 0.01    | -    | 339  |
| Water                     | —    | —    | —    | —    | —    | —     | —     | —     | —      | —    | —      | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 | -    | 0.01 |
| Waste                     | _    | —    | —    | -    | -    | —     | —     | —     | —      | —    | _      | 0.00 | 0.00  | 0.00 | 0.00    | 0.00    | -    | 0.00 |
| Vegetatio<br>n            | -    | —    | —    | _    | -    | -     | -     | -     | —      | —    | -      | -    | 0.00  | 0.00 | —       | -       | -    | 0.00 |
| Total                     | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | 0.00 | 335   | 335  | 0.05    | 0.01    | 0.00 | 339  |
| Daily,<br>Winter<br>(Max) | —    | -    | -    | _    | —    | -     | _     | _     | _      | _    | —      | _    | -     | —    | -       | _       | —    | _    |
| Mobile                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00 | 0.00   | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Area                      | _    | 0.02 | —    | -    | -    | —     | _     | —     | —      | —    | _      | -    | —     | _    | —       | —       | -    | —    |
| Energy                    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | _     | 0.00  | 0.00   | _    | 0.00   | -    | 335   | 335  | 0.05    | 0.01    | -    | 339  |
| Water                     | _    | —    | —    | -    | -    | —     | _     | —     | —      | —    | _      | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 | -    | 0.01 |
| Waste                     | _    | _    | _    | _    |      | _     | _     | _     | _      | _    | _      | 0.00 | 0.00  | 0.00 | 0.00    | 0.00    | _    | 0.00 |

| Vegetatio        | _    | _       | _    | _    | _    | _    |      | _    | _    | _    | _    | _    | 0.00    | 0.00    | _       | _       | _    | 0.00    |
|------------------|------|---------|------|------|------|------|------|------|------|------|------|------|---------|---------|---------|---------|------|---------|
| Total            | 0.00 | 0.02    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 335     | 335     | 0.05    | 0.01    | 0.00 | 339     |
| Average<br>Daily | —    | -       | —    | -    | —    | -    | -    | -    | —    | -    | -    | _    | _       | —       | —       | _       | -    | -       |
| Mobile           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | —    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    |
| Area             | —    | 0.02    | -    | —    | —    | —    | —    | —    | -    | —    | —    | —    | _       | —       | —       | -       | -    | —       |
| Energy           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | _    | 0.00 | 0.00 | —    | 0.00 | _    | 335     | 335     | 0.05    | 0.01    | _    | 339     |
| Water            | _    | _       | -    | -    | —    | _    | -    | -    | -    | —    | _    | 0.00 | 0.01    | 0.01    | < 0.005 | < 0.005 | -    | 0.01    |
| Waste            | _    | _       | _    | _    | _    | _    | _    | _    | _    | _    | _    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _    | 0.00    |
| Vegetatio<br>n   |      | -       | -    | -    | _    | -    | _    | _    | -    | -    | _    | -    | 0.00    | 0.00    | -       | -       | -    | 0.00    |
| Total            | 0.00 | 0.02    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 335     | 335     | 0.05    | 0.01    | 0.00 | 339     |
| Annual           | _    | _       | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _       | _       | _       | _       | _    | —       |
| Mobile           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    |
| Area             | _    | < 0.005 | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _       | _       | _       | _       | _    | _       |
| Energy           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | _    | 0.00 | 0.00 | _    | 0.00 | _    | 55.5    | 55.5    | 0.01    | < 0.005 | _    | 56.1    |
| Water            | _    | _       | _    | -    | _    | _    | _    | _    | _    | _    | _    | 0.00 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _    | < 0.005 |
| Waste            | _    | _       | _    | _    | _    | _    | _    | _    | _    | _    | _    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _    | 0.00    |
| Vegetatio<br>n   | —    | -       | -    | -    |      | -    | _    | _    | _    | —    | _    | -    | 0.00    | 0.00    | -       | -       | -    | 0.00    |
| Total            | 0.00 | < 0.005 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 55.5    | 55.5    | 0.01    | < 0.005 | 0.00 | 56.1    |

# 3. Construction Emissions Details

## 3.1. Demolition (2024) - Unmitigated

| Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite   | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | _   | — | —    |

| Daily,<br>Summer<br>(Max) |      | —       | _    | _    | _       | —       | —       | —       | —       |         | _       | _ | _     | _     | _       | _       | _    | —     |
|---------------------------|------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|-------|-------|---------|---------|------|-------|
| Daily,<br>Winter<br>(Max) | _    | -       | -    | -    | -       |         | -       | _       | -       | _       | -       | _ | -     | -     | -       | -       | —    | _     |
| Off-Road<br>Equipmen      |      | 0.75    | 7.19 | 7.06 | 0.01    | 0.31    | —       | 0.31    | 0.28    | -       | 0.28    | _ | 1,102 | 1,102 | 0.04    | 0.01    | -    | 1,105 |
| Demolitio<br>n            | _    | -       | -    | -    | -       | _       | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | - | -     | -     | -       | -       | -    | _     |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Average<br>Daily          | _    | _       | -    | -    | _       | _       | _       | _       | _       | -       | -       | - | _     | -     | -       | -       | -    | _     |
| Off-Road<br>Equipmen      |      | 0.02    | 0.16 | 0.15 | < 0.005 | 0.01    | _       | 0.01    | 0.01    | -       | 0.01    | - | 24.1  | 24.1  | < 0.005 | < 0.005 | -    | 24.2  |
| Demolitio<br>n            | _    | _       | -    | -    | _       | _       | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | - | _     | -     | -       | -       | -    | _     |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Annual                    | _    | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _     | _     | _       | _       | _    | _     |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.03 | 0.03 | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -       | < 0.005 | _ | 4.00  | 4.00  | < 0.005 | < 0.005 | -    | 4.01  |
| Demolitio<br>n            |      | —       | _    | -    | _       | _       | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | - | _     | -     | -       | -       | _    | —     |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00  | 0.00  | 0.00    | 0.00    | 0.00 | 0.00  |
| Offsite                   | _    | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _     | _     | _       | _       | _    | _     |
| Daily,<br>Summer<br>(Max) |      | _       | _    | -    | -       | _       | _       | _       | _       | _       | —       | _ | -     | _     | _       | _       | _    | —     |
| Daily,<br>Winter<br>(Max) |      | _       |      | _    | _       | _       |         | _       | _       | _       | _       |   | _     | _     | -       | _       | _    | _     |

| Worker           | 0.03    | 0.03    | 0.03    | 0.31    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 58.4 | 58.4 | < 0.005 | < 0.005 | 0.01    | 59.2 |
|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor           | < 0.005 | < 0.005 | 0.10    | 0.04    | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | _ | 70.9 | 70.9 | < 0.005 | 0.01    | < 0.005 | 74.0 |
| Hauling          | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 8.81 | 8.81 | < 0.005 | < 0.005 | < 0.005 | 9.24 |
| Average<br>Daily | _       | _       | -       | -       | -       | _       | -       | -       | -       | -       | -       | - | _    | -    | _       | _       | _       | -    |
| Worker           | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.33 | 1.33 | < 0.005 | < 0.005 | < 0.005 | 1.35 |
| Vendor           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.55 | 1.55 | < 0.005 | < 0.005 | < 0.005 | 1.62 |
| Hauling          | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 0.19 | 0.19 | < 0.005 | < 0.005 | < 0.005 | 0.20 |
| Annual           | _       | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Worker           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.22 | 0.22 | < 0.005 | < 0.005 | < 0.005 | 0.22 |
| Vendor           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.26 | 0.26 | < 0.005 | < 0.005 | < 0.005 | 0.27 |
| Hauling          | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.03 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 0.03 |

# 3.2. Demolition (2024) - Mitigated

|                           |      | · · · | ·    | <i>.</i> , , |      | <i>,</i> | · · ·   |         | <b>,</b> |         | /       |      |       |       |      |      |      |       |
|---------------------------|------|-------|------|--------------|------|----------|---------|---------|----------|---------|---------|------|-------|-------|------|------|------|-------|
| Location                  | TOG  | ROG   | NOx  | со           | SO2  | PM10E    | PM10D   | PM10T   | PM2.5E   | PM2.5D  | PM2.5T  | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
| Onsite                    | —    | —     | —    | —            | —    | —        | —       | —       | —        | —       | —       | —    | —     | —     | —    | —    | —    | —     |
| Daily,<br>Summer<br>(Max) |      | _     |      |              |      |          |         |         |          |         |         | _    |       |       |      | _    |      |       |
| Daily,<br>Winter<br>(Max) |      | -     |      |              | _    |          |         |         |          |         |         | _    |       |       | _    | -    |      |       |
| Off-Road<br>Equipmen      |      | 0.75  | 7.19 | 7.06         | 0.01 | 0.31     | _       | 0.31    | 0.28     | —       | 0.28    | -    | 1,102 | 1,102 | 0.04 | 0.01 | —    | 1,105 |
| Demolitio<br>n            |      | _     | _    | _            | _    | _        | < 0.005 | < 0.005 | _        | < 0.005 | < 0.005 | _    |       | _     | _    | _    | _    |       |
| Onsite<br>truck           | 0.00 | 0.00  | 0.00 | 0.00         | 0.00 | 0.00     | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | _    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |

| Average<br>Daily          | _       | -       | -       | -       | _       | -       | _       | _       | -       | -       | _       | - | _    | _    | _       | -       | -       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Off-Road<br>Equipmen      |         | 0.02    | 0.16    | 0.15    | < 0.005 | 0.01    | _       | 0.01    | 0.01    | -       | 0.01    | - | 24.1 | 24.1 | < 0.005 | < 0.005 | -       | 24.2 |
| Demolitio<br>n            | _       | _       | _       | _       | _       | _       | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | - | —    | _    | _       | _       | -       | -    |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —       | _       | -       | -       | -       | -       | -       | -       | -       | -       | -       | _ | _    | _    | _       | -       | -       | _    |
| Off-Road<br>Equipmen      |         | < 0.005 | 0.03    | 0.03    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | -       | < 0.005 | - | 4.00 | 4.00 | < 0.005 | < 0.005 | -       | 4.01 |
| Demolitio<br>n            | —       | -       | -       | -       | _       | -       | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | - | —    | —    | —       | -       | -       | -    |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | -       | _       | _       | -       | _       | _       | -       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | _       | _       | -       | -       |         | _       | _       | _       | _       | _       | _       | - | -    | —    | -       | -       | -       | -    |
| Daily,<br>Winter<br>(Max) |         | -       | -       | -       |         | -       |         |         | -       | _       |         | - | -    | -    | -       |         |         | -    |
| Worker                    | 0.03    | 0.03    | 0.03    | 0.31    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 58.4 | 58.4 | < 0.005 | < 0.005 | 0.01    | 59.2 |
| Vendor                    | < 0.005 | < 0.005 | 0.10    | 0.04    | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | _ | 70.9 | 70.9 | < 0.005 | 0.01    | < 0.005 | 74.0 |
| Hauling                   | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 8.81 | 8.81 | < 0.005 | < 0.005 | < 0.005 | 9.24 |
| Average<br>Daily          | —       | -       | -       | -       | _       | -       | _       | _       | _       | -       | -       | - | —    | —    | —       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.33 | 1.33 | < 0.005 | < 0.005 | < 0.005 | 1.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 1.55 | 1.55 | < 0.005 | < 0.005 | < 0.005 | 1.62 |
| Hauling                   | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 0.19 | 0.19 | < 0.005 | < 0.005 | < 0.005 | 0.20 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.22 | 0.22 | < 0.005 | < 0.005 | < 0.005 | 0.22 |

| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.26 | 0.26 | < 0.005 | < 0.005 | < 0.005 | 0.27 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Hauling | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 0.03 | 0.03 | < 0.005 | < 0.005 | < 0.005 | 0.03 |

## 3.3. Site Preparation (2023) - Unmitigated

|                                                  |      |      |      | · , · · · · · · · · · |         |       |         |         | ,, j,  | 11/91 101 |         |      |       |      |         |         |      |      |
|--------------------------------------------------|------|------|------|-----------------------|---------|-------|---------|---------|--------|-----------|---------|------|-------|------|---------|---------|------|------|
| Location                                         | TOG  | ROG  | NOx  | со                    | SO2     | PM10E | PM10D   | PM10T   | PM2.5E | PM2.5D    | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                                           | _    | —    | —    | —                     | _       | —     | —       | —       | _      | —         | _       | —    | —     | _    | —       | _       | —    | —    |
| Daily,<br>Summer<br>(Max)                        | —    | —    |      |                       | —       | —     | -       | -       | —      | —         | -       | —    | —     | —    |         | _       | —    | —    |
| Off-Road<br>Equipmen                             |      | 0.40 | 3.77 | 4.18                  | 0.01    | 0.20  | _       | 0.20    | 0.18   | —         | 0.18    | _    | 643   | 643  | 0.03    | 0.01    | _    | 645  |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> |      | _    | _    | —                     | _       | _     | < 0.005 | < 0.005 | —      | < 0.005   | < 0.005 | _    | _     | _    | _       | _       | _    | _    |
| Onsite<br>truck                                  | 0.00 | 0.00 | 0.00 | 0.00                  | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00      | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)                        | _    | _    | -    | -                     | -       | -     | -       | -       | -      | -         | -       | -    | -     | -    |         | -       |      | -    |
| Average<br>Daily                                 | —    | _    | -    | -                     | _       | _     | _       | _       | -      | _         | -       | _    | _     | _    | _       | _       | _    | -    |
| Off-Road<br>Equipmen                             |      | 0.01 | 0.11 | 0.13                  | < 0.005 | 0.01  | _       | 0.01    | 0.01   | _         | 0.01    | _    | 19.4  | 19.4 | < 0.005 | < 0.005 | _    | 19.5 |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> |      | _    |      | _                     |         |       | < 0.005 | < 0.005 | _      | < 0.005   | < 0.005 | _    | _     | _    | _       | _       | _    |      |
| Onsite<br>truck                                  | 0.00 | 0.00 | 0.00 | 0.00                  | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00      | 0.00    |      | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                                           | _    | _    | _    | _                     | _       | _     | _       | _       | _      | _         | _       | _    | _     | _    | _       | _       | _    | _    |

| Off-Road<br>Equipmen                             |         | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | -       | < 0.005 | - | 3.21 | 3.21 | < 0.005 | < 0.005 | -       | 3.22 |
|--------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>:   | _       | _       | _       | _       | _       | < 0.005 | < 0.005 |         | < 0.005 | < 0.005 |   |      | _    | _       |         |         | _    |
| Onsite<br>truck                                  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                                          | _       | —       | —       | -       | -       | -       | -       | -       | —       | —       | -       | - | -    | _    | _       | -       | —       | -    |
| Daily,<br>Summer<br>(Max)                        |         | -       | —       |         | _       | —       | _       |         |         |         |         | _ | -    | -    | -       |         | _       | -    |
| Worker                                           | 0.03    | 0.03    | 0.02    | 0.30    | 0.00    | 0.00    | 0.04    | 0.04    | 0.00    | 0.01    | 0.01    | — | 45.3 | 45.3 | < 0.005 | < 0.005 | 0.19    | 46.0 |
| Vendor                                           | < 0.005 | < 0.005 | 0.09    | 0.04    | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | — | 71.9 | 71.9 | < 0.005 | 0.01    | 0.19    | 75.1 |
| Hauling                                          | < 0.005 | < 0.005 | 0.08    | 0.02    | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | — | 65.1 | 65.1 | < 0.005 | 0.01    | 0.16    | 68.3 |
| Daily,<br>Winter<br>(Max)                        |         | -       | _       | _       | _       | _       | -       | _       |         | _       |         | _ | _    | —    | _       |         | _       | -    |
| Average<br>Daily                                 | _       | _       | -       | _       | —       | —       | _       | -       | -       | -       | —       | - | —    | -    | —       | -       | -       | -    |
| Worker                                           | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 1.24 | 1.24 | < 0.005 | < 0.005 | < 0.005 | 1.26 |
| Vendor                                           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 2.17 | 2.17 | < 0.005 | < 0.005 | < 0.005 | 2.26 |
| Hauling                                          | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 1.96 | 1.96 | < 0.005 | < 0.005 | < 0.005 | 2.06 |
| Annual                                           | —       | _       | _       | -       | —       | —       | —       | _       | -       | _       | -       | — | —    | —    | —       | -       | _       | —    |
| Worker                                           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 0.21 | 0.21 | < 0.005 | < 0.005 | < 0.005 | 0.21 |
| Vendor                                           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 0.36 | 0.36 | < 0.005 | < 0.005 | < 0.005 | 0.37 |
| Hauling                                          | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.32 | 0.32 | < 0.005 | < 0.005 | < 0.005 | 0.34 |

### 3.4. Site Preparation (2023) - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

PM2.5E PM2.5D PM2.5T TOG ROG NOx CO SO2 PM10E PM10D PM10T BCO2 NBCO2 CO2T CH4 N20 CO2e Location R

| Onsite                                           | _     | _       | _    | _    | _       | _       |         |         | _       |         | _       | _ | _    | _    |         |         | _    | _    |
|--------------------------------------------------|-------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
|                                                  |       |         | _    |      |         | _       |         | _       |         |         |         |   |      |      |         | _       | _    |      |
| Daily,<br>Summer<br>(Max)                        |       | _       | _    |      |         |         | _       | _       | _       | _       | _       |   | _    |      |         | _       | _    |      |
| Off-Road<br>Equipmen                             |       | 0.40    | 3.77 | 4.18 | 0.01    | 0.20    | _       | 0.20    | 0.18    | _       | 0.18    | — | 643  | 643  | 0.03    | 0.01    | _    | 645  |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>: |         |      |      | _       |         | < 0.005 | < 0.005 |         | < 0.005 | < 0.005 |   | _    |      |         |         |      |      |
| Onsite<br>truck                                  | 0.00  | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)                        |       | _       | _    | —    | -       | _       | _       | _       | —       |         |         | — |      | —    | -       | _       |      | —    |
| Average<br>Daily                                 | —     | —       | —    | -    | —       | -       | —       | -       | —       | —       | —       | — | —    | —    | -       | —       | —    | -    |
| Off-Road<br>Equipmen                             |       | 0.01    | 0.11 | 0.13 | < 0.005 | 0.01    | —       | 0.01    | 0.01    | —       | 0.01    | _ | 19.4 | 19.4 | < 0.005 | < 0.005 | —    | 19.5 |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>T | _       | _    | _    | _       |         | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 |   | _    | _    | _       | _       | _    | _    |
| Onsite<br>truck                                  | 0.00  | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                                           | _     | _       | _    | _    | _       | _       | -       | -       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen                             |       | < 0.005 | 0.02 | 0.02 | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005 | _ | 3.21 | 3.21 | < 0.005 | < 0.005 | _    | 3.22 |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>t | _       |      |      |         |         | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 |   | -    |      |         | _       | _    |      |
| Onsite<br>truck                                  | 0.00  | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                                          | _     |         |      |      | _       | _       |         |         | _       | _       |         |   |      |      |         |         |      |      |

| Daily,<br>Summer<br>(Max) | -       | _       | -       | -       | _       | _       | _       | _       |         | _       | _       | _ | _    | _    | _       | _       | _       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker                    | 0.03    | 0.03    | 0.02    | 0.30    | 0.00    | 0.00    | 0.04    | 0.04    | 0.00    | 0.01    | 0.01    | _ | 45.3 | 45.3 | < 0.005 | < 0.005 | 0.19    | 46.0 |
| Vendor                    | < 0.005 | < 0.005 | 0.09    | 0.04    | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | 0.01    | 0.01    | _ | 71.9 | 71.9 | < 0.005 | 0.01    | 0.19    | 75.1 |
| Hauling                   | < 0.005 | < 0.005 | 0.08    | 0.02    | < 0.005 | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | 0.01    | - | 65.1 | 65.1 | < 0.005 | 0.01    | 0.16    | 68.3 |
| Daily,<br>Winter<br>(Max) | _       | _       | -       | _       | _       | _       | —       | _       |         | -       | _       | — |      | _    |         |         |         | _    |
| Average<br>Daily          | -       | -       | -       | -       | _       | —       | -       | -       | _       | -       | -       | _ | —    | -    | -       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 1.24 | 1.24 | < 0.005 | < 0.005 | < 0.005 | 1.26 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 2.17 | 2.17 | < 0.005 | < 0.005 | < 0.005 | 2.26 |
| Hauling                   | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 1.96 | 1.96 | < 0.005 | < 0.005 | < 0.005 | 2.06 |
| Annual                    | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | - | —    | _    | —       | —       | —       | —    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 0.21 | 0.21 | < 0.005 | < 0.005 | < 0.005 | 0.21 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.36 | 0.36 | < 0.005 | < 0.005 | < 0.005 | 0.37 |
| Hauling                   | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.32 | 0.32 | < 0.005 | < 0.005 | < 0.005 | 0.34 |

## 3.5. Grading (2023) - Unmitigated

| Location                  | TOG | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R | CO2e  |
|---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|-------|------|------|---|-------|
| Onsite                    | —   | —    | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    | —     | —     | —    | —    | — | —     |
| Daily,<br>Summer<br>(Max) |     |      |      |      |      |       |       |       |        |        |        |      |       |       |      |      |   | _     |
| Off-Road<br>Equipmer      |     | 1.28 | 12.6 | 11.4 | 0.02 | 0.60  | _     | 0.60  | 0.55   | _      | 0.55   | _    | 1,713 | 1,713 | 0.07 | 0.01 | _ | 1,719 |

| Dust<br>From<br>Material<br>Movemen              | <br>t   | _       | -    |      | _       | _       | 0.00 | 0.00 | _       | 0.00    | 0.00    | _ | -    | -    | _       |         |      |      |
|--------------------------------------------------|---------|---------|------|------|---------|---------|------|------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Onsite<br>truck                                  | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)                        | —       | _       | _    | _    |         |         |      | _    | _       |         | _       |   | _    | _    | _       | _       |      | _    |
| Average<br>Daily                                 | —       | —       | _    | —    | —       | _       | -    | —    |         | _       | -       | - | —    | -    |         | -       | -    | -    |
| Off-Road<br>Equipmen                             |         | 0.06    | 0.62 | 0.56 | < 0.005 | 0.03    | -    | 0.03 | 0.03    | _       | 0.03    | - | 84.5 | 84.5 | < 0.005 | < 0.005 | —    | 84.8 |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>t   |         |      |      | _       |         | 0.00 | 0.00 |         | 0.00    | 0.00    |   | _    |      |         |         |      |      |
| Onsite<br>truck                                  | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                                           | —       | _       | —    | -    | _       | -       | _    | —    | _       | -       | —       | - | —    | -    | —       | —       | _    | —    |
| Off-Road<br>Equipmen                             |         | 0.01    | 0.11 | 0.10 | < 0.005 | 0.01    | -    | 0.01 | < 0.005 | -       | < 0.005 | - | 14.0 | 14.0 | < 0.005 | < 0.005 | -    | 14.0 |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> |         | _       | _    |      | -       | —       | 0.00 | 0.00 | _       | 0.00    | 0.00    | _ | -    | -    | _       |         |      | _    |
| Onsite<br>truck                                  | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                                          | —       | _       | —    | -    | _       | -       | _    | —    | _       | -       | —       | - | —    | -    | —       | —       | _    | —    |
| Daily,<br>Summer<br>(Max)                        |         | -       | -    | -    | _       |         | _    | _    | -       |         | _       |   |      | -    | -       | -       | _    | _    |
| Worker                                           | 0.04    | 0.04    | 0.03 | 0.46 | 0.00    | 0.00    | 0.06 | 0.06 | 0.00    | 0.01    | 0.01    | - | 68.0 | 68.0 | < 0.005 | < 0.005 | 0.28 | 69.1 |
| Vendor                                           | < 0.005 | < 0.005 | 0.06 | 0.02 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | - | 47.9 | 47.9 | < 0.005 | 0.01    | 0.13 | 50.1 |
| Hauling                                          | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | _       | _       | -       | -       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Average<br>Daily          | -       | -       | -       | -       | -       | _       | -       | -       | _       | -       | -       | - | _    | -    | -       | -       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.05 | 3.05 | < 0.005 | < 0.005 | 0.01    | 3.10 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 2.36 | 2.36 | < 0.005 | < 0.005 | < 0.005 | 2.47 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | -       | -       | _       | -       | _ | _    | _    | _       | _       | -       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.51 | 0.51 | < 0.005 | < 0.005 | < 0.005 | 0.51 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.39 | 0.39 | < 0.005 | < 0.005 | < 0.005 | 0.41 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.6. Grading (2023) - Mitigated

|                                     |       |      |      | <u> </u> |      | ,<br>, | ,     | , <u> </u> | <b>3</b> 7 |        | ,      |      |       |       |      |      |      |       |
|-------------------------------------|-------|------|------|----------|------|--------|-------|------------|------------|--------|--------|------|-------|-------|------|------|------|-------|
| Location                            | TOG   | ROG  | NOx  | со       | SO2  | PM10E  | PM10D | PM10T      | PM2.5E     | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T  | CH4  | N2O  | R    | CO2e  |
| Onsite                              | —     | —    | —    | —        | —    | —      | —     | —          | —          | —      | —      | —    | —     | —     | —    | —    | —    | —     |
| Daily,<br>Summer<br>(Max)           |       | _    | _    | _        |      |        | _     |            |            |        |        | _    |       | _     |      |      |      | _     |
| Off-Road<br>Equipmen                |       | 1.28 | 12.6 | 11.4     | 0.02 | 0.60   | —     | 0.60       | 0.55       | —      | 0.55   | —    | 1,713 | 1,713 | 0.07 | 0.01 |      | 1,719 |
| Dust<br>From<br>Material<br>Movemen | <br>: | _    | _    | _        |      |        | 0.00  | 0.00       |            | 0.00   | 0.00   | _    |       |       |      |      |      |       |
| Onsite<br>truck                     | 0.00  | 0.00 | 0.00 | 0.00     | 0.00 | 0.00   | 0.00  | 0.00       | 0.00       | 0.00   | 0.00   | —    | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.00  |
| Daily,<br>Winter<br>(Max)           |       | _    | _    | _        |      |        |       |            |            |        |        | _    |       |       |      |      |      |       |

| Average<br>Daily                    | —       | -       | _       | -       | _       | _       | _       | _       | _       | -       | -       | - | -    | -    | -       | -       | -       | -    |
|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Off-Road<br>Equipmen                |         | 0.06    | 0.62    | 0.56    | < 0.005 | 0.03    | —       | 0.03    | 0.03    | —       | 0.03    | — | 84.5 | 84.5 | < 0.005 | < 0.005 | —       | 84.8 |
| Dust<br>From<br>Material<br>Movemen |         | -       |         | -       | -       | -       | 0.00    | 0.00    |         | 0.00    | 0.00    | - | -    | -    | -       | _       | -       |      |
| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                              | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmen                |         | 0.01    | 0.11    | 0.10    | < 0.005 | 0.01    | -       | 0.01    | < 0.005 | _       | < 0.005 | _ | 14.0 | 14.0 | < 0.005 | < 0.005 | _       | 14.0 |
| Dust<br>From<br>Material<br>Movemen | <br>1   | -       |         | -       | -       | -       | 0.00    | 0.00    |         | 0.00    | 0.00    | _ | -    |      | -       |         | -       |      |
| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                             | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max)           | _       | -       | _       | _       |         | -       | _       | _       | _       | -       | _       | - | _    | -    | -       | _       | _       | _    |
| Worker                              | 0.04    | 0.04    | 0.03    | 0.46    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | - | 68.0 | 68.0 | < 0.005 | < 0.005 | 0.28    | 69.1 |
| Vendor                              | < 0.005 | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | - | 47.9 | 47.9 | < 0.005 | 0.01    | 0.13    | 50.1 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max)           |         | -       |         | -       |         | -       | _       | _       |         | -       |         | _ |      | -    | -       | _       | -       | _    |
| Average<br>Daily                    | —       | —       | —       |         |         | _       | _       | -       | -       | -       | -       | — | —    | -    | _       | -       | -       | —    |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.05 | 3.05 | < 0.005 | < 0.005 | 0.01    | 3.10 |
| Vendor                              | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 2.36 | 2.36 | < 0.005 | < 0.005 | < 0.005 | 2.47 |

| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual  | -       | —       | —       | —       | —       | —       | —       | —       | —       | —       | -       | — | —    | —    | —       | -       | —       | _    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.51 | 0.51 | < 0.005 | < 0.005 | < 0.005 | 0.51 |
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.39 | 0.39 | < 0.005 | < 0.005 | < 0.005 | 0.41 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.7. Grading (2024) - Unmitigated

| Location                            | TOG   | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------------|-------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|------|------|
| Onsite                              | _     | —    | -    | -    | -       | -     | -     | -     | _      | _      | -      | -    | _     | _    | -       | -       | —    | _    |
| Daily,<br>Summer<br>(Max)           | _     | -    | -    | _    | _       | -     | —     | _     |        |        |        | _    |       |      | —       | _       |      | —    |
| Daily,<br>Winter<br>(Max)           | _     | -    | -    | _    | _       | _     |       |       |        |        |        |      |       |      | _       |         |      | -    |
| Off-Road<br>Equipmen                |       | 0.36 | 3.30 | 3.93 | 0.01    | 0.17  | —     | 0.17  | 0.16   |        | 0.16   | —    | 607   | 607  | 0.02    | < 0.005 |      | 609  |
| Dust<br>From<br>Material<br>Movemen | <br>t | _    | _    | _    | _       | _     | 0.00  | 0.00  |        | 0.00   | 0.00   |      |       |      | _       |         |      | _    |
| Onsite<br>truck                     | 0.00  | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily                    | _     | -    | _    | -    | _       | —     | _     | _     | _      | _      | _      | _    | _     | _    | —       | _       | _    | —    |
| Off-Road<br>Equipmen                |       | 0.03 | 0.30 | 0.36 | < 0.005 | 0.02  | —     | 0.02  | 0.01   | —      | 0.01   | _    | 54.9  | 54.9 | < 0.005 | < 0.005 | _    | 55.1 |
| Dust<br>From<br>Material<br>Movemen | <br>t |      | _    | _    | _       | _     | 0.00  | 0.00  |        | 0.00   | 0.00   |      |       |      |         |         |      | _    |

| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                              | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmer                |         | 0.01    | 0.05    | 0.06    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005 | - | 9.09 | 9.09 | < 0.005 | < 0.005 | _       | 9.12 |
| Dust<br>From<br>Material<br>Movemen |         | _       | _       | _       | _       | _       | 0.00    | 0.00    | _       | 0.00    | 0.00    |   | _    | _    | _       | _       | _       | _    |
| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                             | _       | _       | -       | -       | _       | _       | _       | _       | _       | -       | -       | - | _    | -    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max)           | _       | -       | _       | _       |         | _       | _       | -       | _       | _       | _       | _ | -    | -    | -       | -       | -       | _    |
| Daily,<br>Winter<br>(Max)           |         |         |         |         |         | -       |         | -       |         |         |         | _ | -    | -    | -       | -       | -       | _    |
| Worker                              | 0.02    | 0.02    | 0.02    | 0.20    | 0.00    | 0.00    | 0.04    | 0.04    | 0.00    | 0.01    | 0.01    | _ | 38.9 | 38.9 | < 0.005 | < 0.005 | < 0.005 | 39.5 |
| Vendor                              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily                    | _       | _       | -       | -       | _       | _       | -       | -       | _       | -       | -       | - | —    | —    | —       | -       | -       | -    |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.65 | 3.65 | < 0.005 | < 0.005 | 0.01    | 3.71 |
| Vendor                              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                              | _       | _       | -       | _       | _       | _       | _       | -       | _       | _       | -       | - | -    | -    | _       | _       | _       | _    |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 0.60 | 0.60 | < 0.005 | < 0.005 | < 0.005 | 0.61 |
| Vendor                              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.8. Grading (2024) - Mitigated

| Location                            | TOG   | ROG  | NOx  | CO   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------------|-------|------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                              | —     | —    | —    | —    | _       | —       | —     | —       | —       | _      | —       | _    | _     | —    | —       | —       | _    | —    |
| Daily,<br>Summer<br>(Max)           |       | _    | -    | -    | _       | -       | -     | -       | -       | -      | -       | _    | _     | -    | -       | _       | —    | _    |
| Daily,<br>Winter<br>(Max)           | _     |      | _    | _    | _       | _       | _     | _       | _       | _      | _       | _    | _     | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen                |       | 0.36 | 3.30 | 3.93 | 0.01    | 0.17    | —     | 0.17    | 0.16    | —      | 0.16    | —    | 607   | 607  | 0.02    | < 0.005 | —    | 609  |
| Dust<br>From<br>Material<br>Movemen |       |      | _    | _    | _       | _       | 0.00  | 0.00    | _       | 0.00   | 0.00    | _    |       | _    |         | _       | —    | _    |
| Onsite<br>truck                     | 0.00  | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily                    | _     | -    | -    | -    | _       | -       | -     | -       | _       | -      | -       | -    | _     | -    | _       | -       | -    | _    |
| Off-Road<br>Equipmen                |       | 0.03 | 0.30 | 0.36 | < 0.005 | 0.02    | -     | 0.02    | 0.01    | _      | 0.01    | -    | 54.9  | 54.9 | < 0.005 | < 0.005 | -    | 55.1 |
| Dust<br>From<br>Material<br>Movemen | <br>1 |      | -    | -    | -       | -       | 0.00  | 0.00    | -       | 0.00   | 0.00    | -    | -     | -    | -       | _       |      | -    |
| Onsite<br>truck                     | 0.00  | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                              | _     | _    | _    | _    | _       | _       | _     | _       | _       | -      | _       | _    | _     | -    | _       | _       | _    | _    |
| Off-Road<br>Equipmen                |       | 0.01 | 0.05 | 0.06 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _      | < 0.005 | _    | 9.09  | 9.09 | < 0.005 | < 0.005 | _    | 9.12 |

| Dust<br>From<br>Material<br>Movemen | <br>.:  | -       | -       | -       | -    | -    | 0.00    | 0.00    | -    | 0.00    | 0.00    | - | -    | -    | -       | -       | -       | _    |
|-------------------------------------|---------|---------|---------|---------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                             | _       | _       | _       | _       | _    | -    | _       | _       | _    | -       | _       | _ | _    | _    | _       | _       | _       | -    |
| Daily,<br>Summer<br>(Max)           | _       | -       | -       | -       | -    | _    | -       | -       | _    | -       | -       | - | _    | -    | _       | -       | -       | -    |
| Daily,<br>Winter<br>(Max)           | _       | -       | -       | -       | -    | _    | -       | -       | -    | _       | -       | - | _    | _    | _       | -       | _       | -    |
| Worker                              | 0.02    | 0.02    | 0.02    | 0.20    | 0.00 | 0.00 | 0.04    | 0.04    | 0.00 | 0.01    | 0.01    | _ | 38.9 | 38.9 | < 0.005 | < 0.005 | < 0.005 | 39.5 |
| Vendor                              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily                    |         |         | —       | —       |      | —    | —       | —       | _    | —       | —       | _ | —    | —    | —       | —       | —       |      |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 3.65 | 3.65 | < 0.005 | < 0.005 | 0.01    | 3.71 |
| Vendor                              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                              | —       | _       | _       | _       | —    | —    | —       | —       | —    | —       | -       | _ | —    | _    | —       | _       | -       | -    |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 0.60 | 0.60 | < 0.005 | < 0.005 | < 0.005 | 0.61 |
| Vendor                              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                             | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.9. Building Construction (2023) - Unmitigated

| Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite   | _   | _   | —   | —  | —   | —     | —     | —     | _      | _      | —      | —    | —     | —    | —   | —   | _ | _    |

| Daily,<br>Summer<br>(Max)                        | _        | _    | —    | —    | _       |      | _       | _       | _       | _       | _       | - | _    | —    | —       | _       | _    | —    |
|--------------------------------------------------|----------|------|------|------|---------|------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Off-Road<br>Equipmen                             |          | 0.31 | 3.32 | 4.98 | 0.01    | 0.15 | —       | 0.15    | 0.14    | -       | 0.14    | - | 769  | 769  | 0.03    | 0.01    | -    | 771  |
| Dust<br>From<br>Material<br>Movemen              | <br>:    | _    | _    | _    | _       | _    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _ |      | _    | _       | _       | _    | _    |
| Onsite<br>truck                                  | 0.00     | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)                        | _        | _    | _    | _    | —       | _    | —       | _       | _       | _       | _       | - | —    | -    | _       | _       | _    | _    |
| Off-Road<br>Equipmen                             |          | 0.31 | 3.32 | 4.98 | 0.01    | 0.15 | —       | 0.15    | 0.14    | —       | 0.14    | - | 769  | 769  | 0.03    | 0.01    | -    | 771  |
| Dust<br>From<br>Material<br>Movemen              | <u> </u> | _    | _    | _    | _       | _    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _ |      | _    | _       | _       | _    | _    |
| Onsite<br>truck                                  | 0.00     | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily                                 |          | _    | —    | —    | _       | —    | -       | -       | _       | -       | -       | - | _    | -    | -       | _       | -    | _    |
| Off-Road<br>Equipmen                             |          | 0.06 | 0.59 | 0.89 | < 0.005 | 0.03 | -       | 0.03    | 0.03    | -       | 0.03    | - | 137  | 137  | 0.01    | < 0.005 | -    | 137  |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> | <br>:    |      | _    | _    |         | _    | < 0.005 | < 0.005 |         | < 0.005 | < 0.005 |   |      | -    | -       |         |      | -    |
| Onsite<br>truck                                  | 0.00     | 0.00 | 0.00 | 0.00 | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                                           | —        | _    | —    | —    | —       | _    | —       | —       | —       | —       | —       | _ | —    | —    | —       | —       | _    | —    |
| Off-Road<br>Equipmen                             |          | 0.01 | 0.11 | 0.16 | < 0.005 | 0.01 | _       | 0.01    | < 0.005 | —       | < 0.005 | — | 22.7 | 22.7 | < 0.005 | < 0.005 | -    | 22.7 |

| Dust<br>From<br>Material<br>Movemen | <br>:t  | -       | -       | -       | -       | _       | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 |   | -    |      | _       | _       | _       | _    |
|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                             | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | -    |
| Daily,<br>Summer<br>(Max)           |         | _       | -       | -       | -       | _       | -       | _       | _       | _       | _       | _ | -    | _    | -       | _       | _       | _    |
| Worker                              | 0.07    | 0.06    | 0.05    | 0.73    | 0.00    | 0.00    | 0.09    | 0.09    | 0.00    | 0.02    | 0.02    | _ | 109  | 109  | 0.01    | < 0.005 | 0.45    | 111  |
| Vendor                              | < 0.005 | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 47.9 | 47.9 | < 0.005 | 0.01    | 0.13    | 50.1 |
| Hauling                             | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 24.2 | 24.2 | < 0.005 | < 0.005 | 0.06    | 25.4 |
| Daily,<br>Winter<br>(Max)           | _       | _       | _       | _       |         | _       |         | _       | _       | _       | _       | _ | _    | _    | -       |         |         | _    |
| Worker                              | 0.06    | 0.05    | 0.06    | 0.53    | 0.00    | 0.00    | 0.09    | 0.09    | 0.00    | 0.02    | 0.02    | _ | 95.4 | 95.4 | 0.01    | < 0.005 | 0.01    | 96.8 |
| Vendor                              | < 0.005 | < 0.005 | 0.07    | 0.03    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 48.0 | 48.0 | < 0.005 | 0.01    | < 0.005 | 50.0 |
| Hauling                             | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 24.3 | 24.3 | < 0.005 | < 0.005 | < 0.005 | 25.4 |
| Average<br>Daily                    | _       | -       | _       | _       | _       | _       | _       | -       | _       | -       | _       | - | -    | -    | -       | -       | _       | _    |
| Worker                              | 0.01    | 0.01    | 0.01    | 0.10    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 17.6 | 17.6 | < 0.005 | < 0.005 | 0.03    | 17.9 |
| Vendor                              | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 8.54 | 8.54 | < 0.005 | < 0.005 | 0.01    | 8.91 |
| Hauling                             | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 4.32 | 4.32 | < 0.005 | < 0.005 | < 0.005 | 4.53 |
| Annual                              | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | -    |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.92 | 2.92 | < 0.005 | < 0.005 | 0.01    | 2.97 |
| Vendor                              | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.41 | 1.41 | < 0.005 | < 0.005 | < 0.005 | 1.48 |
| Hauling                             | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.71 | 0.71 | < 0.005 | < 0.005 | < 0.005 | 0.75 |

# 3.10. Building Construction (2023) - Mitigated

| ontenta                                          |       |      | y let dai | ., .o., j. |         | aur) unu | 01100 ( |         | i ddiry, ii | , j     | annaan  |      |       |      |      |         |      |      |
|--------------------------------------------------|-------|------|-----------|------------|---------|----------|---------|---------|-------------|---------|---------|------|-------|------|------|---------|------|------|
| Location                                         | TOG   | ROG  | NOx       | со         | SO2     | PM10E    | PM10D   | PM10T   | PM2.5E      | PM2.5D  | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R    | CO2e |
| Onsite                                           | —     | —    | -         | -          | -       | -        | —       | -       | —           | —       | -       | —    | —     | —    | —    | —       | —    | -    |
| Daily,<br>Summer<br>(Max)                        | _     | -    |           | _          |         | _        | _       | _       | _           | _       | _       | _    | _     | _    | _    | -       | —    | -    |
| Off-Road<br>Equipmen                             |       | 0.31 | 3.32      | 4.98       | 0.01    | 0.15     | _       | 0.15    | 0.14        | —       | 0.14    | -    | 769   | 769  | 0.03 | 0.01    | -    | 771  |
| Dust<br>From<br>Material<br>Movemen              | <br>! |      |           | _          |         |          | < 0.005 | < 0.005 | _           | < 0.005 | < 0.005 |      |       | _    |      |         |      | -    |
| Onsite<br>truck                                  | 0.00  | 0.00 | 0.00      | 0.00       | 0.00    | 0.00     | 0.00    | 0.00    | 0.00        | 0.00    | 0.00    | -    | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)                        |       | -    | _         | -          | _       | _        | -       | -       | -           | -       | -       | _    | _     | _    | _    | -       | _    | -    |
| Off-Road<br>Equipmen                             |       | 0.31 | 3.32      | 4.98       | 0.01    | 0.15     | —       | 0.15    | 0.14        | -       | 0.14    | -    | 769   | 769  | 0.03 | 0.01    | -    | 771  |
| Dust<br>From<br>Material<br>Movemen              | <br>: |      | -         | -          | -       | -        | < 0.005 | < 0.005 | -           | < 0.005 | < 0.005 |      |       | _    |      |         |      | -    |
| Onsite<br>truck                                  | 0.00  | 0.00 | 0.00      | 0.00       | 0.00    | 0.00     | 0.00    | 0.00    | 0.00        | 0.00    | 0.00    | -    | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |
| Average<br>Daily                                 |       | _    | _         | _          | _       | _        | _       | _       | -           | -       | _       | -    | -     | -    | -    | -       | -    | -    |
| Off-Road<br>Equipmen                             |       | 0.06 | 0.59      | 0.89       | < 0.005 | 0.03     | _       | 0.03    | 0.03        | -       | 0.03    | -    | 137   | 137  | 0.01 | < 0.005 | -    | 137  |
| Dust<br>From<br>Material<br>Movemen <sup>-</sup> |       |      | _         | _          | _       | -        | < 0.005 | < 0.005 | -           | < 0.005 | < 0.005 |      |       |      |      |         |      | _    |
| Onsite<br>truck                                  | 0.00  | 0.00 | 0.00      | 0.00       | 0.00    | 0.00     | 0.00    | 0.00    | 0.00        | 0.00    | 0.00    | _    | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |

| Annual                              | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
|-------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Off-Road<br>Equipmer                |         | 0.01    | 0.11    | 0.16    | < 0.005 | 0.01    | —       | 0.01    | < 0.005 | —       | < 0.005 | - | 22.7 | 22.7 | < 0.005 | < 0.005 | -       | 22.7 |
| Dust<br>From<br>Material<br>Movemen | <br>.:  | -       | -       | -       | -       | -       | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | _ | -    | -    |         |         |         |      |
| Onsite<br>truck                     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                             | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | -    |
| Daily,<br>Summer<br>(Max)           | _       | -       | -       | _       |         | _       | -       | _       | _       | -       | _       | _ | -    | _    | -       | -       | -       | -    |
| Worker                              | 0.07    | 0.06    | 0.05    | 0.73    | 0.00    | 0.00    | 0.09    | 0.09    | 0.00    | 0.02    | 0.02    | _ | 109  | 109  | 0.01    | < 0.005 | 0.45    | 111  |
| Vendor                              | < 0.005 | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 47.9 | 47.9 | < 0.005 | 0.01    | 0.13    | 50.1 |
| Hauling                             | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 24.2 | 24.2 | < 0.005 | < 0.005 | 0.06    | 25.4 |
| Daily,<br>Winter<br>(Max)           | —       | —       | -       | _       |         | _       | _       | _       | _       |         | _       | _ | -    | —    | -       | _       | _       | -    |
| Worker                              | 0.06    | 0.05    | 0.06    | 0.53    | 0.00    | 0.00    | 0.09    | 0.09    | 0.00    | 0.02    | 0.02    | _ | 95.4 | 95.4 | 0.01    | < 0.005 | 0.01    | 96.8 |
| Vendor                              | < 0.005 | < 0.005 | 0.07    | 0.03    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 48.0 | 48.0 | < 0.005 | 0.01    | < 0.005 | 50.0 |
| Hauling                             | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 24.3 | 24.3 | < 0.005 | < 0.005 | < 0.005 | 25.4 |
| Average<br>Daily                    | —       | -       | -       | _       | _       | _       | _       | _       | _       | -       | -       | - | -    | -    | _       | -       | -       | -    |
| Worker                              | 0.01    | 0.01    | 0.01    | 0.10    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 17.6 | 17.6 | < 0.005 | < 0.005 | 0.03    | 17.9 |
| Vendor                              | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 8.54 | 8.54 | < 0.005 | < 0.005 | 0.01    | 8.91 |
| Hauling                             | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 4.32 | 4.32 | < 0.005 | < 0.005 | < 0.005 | 4.53 |
| Annual                              | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | —    | _       | _       | _       | -    |
| Worker                              | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.92 | 2.92 | < 0.005 | < 0.005 | 0.01    | 2.97 |
| Vendor                              | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.41 | 1.41 | < 0.005 | < 0.005 | < 0.005 | 1.48 |
| Hauling                             | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.71 | 0.71 | < 0.005 | < 0.005 | < 0.005 | 0.75 |

## 3.11. Building Construction (2023) - Unmitigated

| ernerna                   | onditan |         |         |      |         | ,       |       | -       |         | i i i ji i oi | annaarj |      |       |      |         |         |      |      |
|---------------------------|---------|---------|---------|------|---------|---------|-------|---------|---------|---------------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG     | ROG     | NOx     | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D        | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —       | _       | _       | _    | _       | _       | -     | -       | _       | —             | _       | -    | _     | _    | _       | _       | —    | _    |
| Daily,<br>Summer<br>(Max) |         | _       | _       | _    | _       | _       | _     | -       | _       | _             | _       | -    | _     | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |         | 0.03    | 0.32    | 0.48 | < 0.005 | 0.02    | —     | 0.02    | 0.01    | —             | 0.01    | —    | 72.6  | 72.6 | < 0.005 | < 0.005 |      | 72.8 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00          | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         | -       | _       | _    | -       | -       | -     |         | _       | -             | -       | -    | _     | _    | -       |         | _    | _    |
| Average<br>Daily          |         |         | _       | _    |         | _       | _     | —       | _       | _             | _       | _    | _     |      | —       | -       | _    | _    |
| Off-Road<br>Equipmen      |         | < 0.005 | 0.03    | 0.04 | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | —             | < 0.005 | —    | 5.77  | 5.77 | < 0.005 | < 0.005 | _    | 5.79 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00          | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | —       | _       | _       | _    | -       | -       | -     | -       | _       | _             | -       | -    | —     | -    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |         | < 0.005 | < 0.005 | 0.01 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _             | < 0.005 | _    | 0.95  | 0.95 | < 0.005 | < 0.005 | -    | 0.96 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00          | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   |         | _       | _       | _    | _       | _       | _     | _       | _       | _             | _       | _    | _     | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) |         | -       | -       | -    | -       | -       | -     | _       | -       | -             | -       | -    | _     | _    | _       | _       | _    | _    |
| Worker                    | 0.03    | 0.03    | 0.02    | 0.37 | 0.00    | 0.00    | 0.05  | 0.05    | 0.00    | 0.01          | 0.01    | -    | 54.4  | 54.4 | < 0.005 | < 0.005 | 0.23 | 55.3 |
| Vendor                    | < 0.005 | < 0.005 | 0.06    | 0.02 | < 0.005 | < 0.005 | 0.01  | 0.01    | < 0.005 | < 0.005       | < 0.005 | _    | 47.9  | 47.9 | < 0.005 | 0.01    | 0.13 | 50.1 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00          | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       | _       | _       | _       | _       | _       | -       | _       | _ | -    | _    | _       |         | _       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Average<br>Daily          | -       | _       | _       | -       | _       | _       | -       | -       | -       | _       | -       | _ | -    | _    | -       | -       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 3.94 | 3.94 | < 0.005 | < 0.005 | 0.01    | 4.00 |
| Vendor                    | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.81 | 3.81 | < 0.005 | < 0.005 | < 0.005 | 3.98 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | -       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.65 | 0.65 | < 0.005 | < 0.005 | < 0.005 | 0.66 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.63 | 0.63 | < 0.005 | < 0.005 | < 0.005 | 0.66 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.12. Building Construction (2023) - Mitigated

|                           |      |         | ,    | <i>J</i> , <i>J</i> |         |         | · · · |         |         |        |         |      |       |      |         |         |      |      |
|---------------------------|------|---------|------|---------------------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG  | ROG     | NOx  | со                  | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —    | —       | —    | —                   | —       | —       | —     | —       | —       | —      | —       | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | _    | —       | —    | _                   | —       | _       | _     | _       | _       |        | _       | _    | _     | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |      | 0.03    | 0.32 | 0.48                | < 0.005 | 0.02    | -     | 0.02    | 0.01    | —      | 0.01    | —    | 72.6  | 72.6 | < 0.005 | < 0.005 | —    | 72.8 |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00                | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) | _    | —       | _    | -                   | —       | _       | _     | _       | _       |        | _       | _    | _     | _    | _       | _       | _    | -    |
| Average<br>Daily          | _    | _       | _    | _                   |         | _       | -     | _       | _       | —      | _       | _    | _     | _    | _       | _       | _    | —    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.03 | 0.04                | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005 | —      | < 0.005 |      | 5.77  | 5.77 | < 0.005 | < 0.005 |      | 5.79 |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                    | -       | -       | -       | -       | -       | -       | _       | -       | -       | _       | -       | _ | -    | _    | -       | -       | _       | _    |
| Off-Road<br>Equipmer      |         | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | -       | < 0.005 | - | 0.95 | 0.95 | < 0.005 | < 0.005 | -       | 0.96 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | -       | _ | _    | -    | _       | _       | -       | _    |
| Daily,<br>Summer<br>(Max) | _       | _       | _       |         |         | _       | -       | _       |         | _       | _       | - | _    | -    | -       | _       | _       | -    |
| Worker                    | 0.03    | 0.03    | 0.02    | 0.37    | 0.00    | 0.00    | 0.05    | 0.05    | 0.00    | 0.01    | 0.01    | _ | 54.4 | 54.4 | < 0.005 | < 0.005 | 0.23    | 55.3 |
| Vendor                    | < 0.005 | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 47.9 | 47.9 | < 0.005 | 0.01    | 0.13    | 50.1 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | -       | _       | _       |         |         | -       | -       | _       |         | _       |         | - | _    | -    | -       |         |         | —    |
| Average<br>Daily          | -       | -       | _       | -       | _       | -       | -       | _       | -       | -       | -       | - | -    | —    | —       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.94 | 3.94 | < 0.005 | < 0.005 | 0.01    | 4.00 |
| Vendor                    | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.81 | 3.81 | < 0.005 | < 0.005 | < 0.005 | 3.98 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | —       | -       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.65 | 0.65 | < 0.005 | < 0.005 | < 0.005 | 0.66 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.63 | 0.63 | < 0.005 | < 0.005 | < 0.005 | 0.66 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.13. Building Construction (2024) - Unmitigated

|   | Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| _ |          |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   | 4    |

| Onsite                    | _       | _       | _    | _    | _       | _       | _    | _    | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
|---------------------------|---------|---------|------|------|---------|---------|------|------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Daily,<br>Summer<br>(Max) | _       | -       | -    | -    | -       | -       | -    | -    | -       | _       | _       | - | -    | -    | -       | _       | -    | -    |
| Off-Road<br>Equipmer      |         | 0.38    | 3.70 | 3.67 | 0.01    | 0.16    | _    | 0.16 | 0.14    | —       | 0.14    | — | 829  | 829  | 0.03    | 0.01    | -    | 832  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         | -       | _    | _    | -       | -       |      | -    |         | -       |         |   |      | -    | -       |         |      | -    |
| Off-Road<br>Equipmer      |         | 0.38    | 3.70 | 3.67 | 0.01    | 0.16    | -    | 0.16 | 0.14    | -       | 0.14    | - | 829  | 829  | 0.03    | 0.01    | -    | 832  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —       | _       | -    | -    | -       | -       | -    | -    | -       | -       | -       | - | -    | -    | -       | -       | -    | -    |
| Off-Road<br>Equipmer      |         | 0.09    | 0.90 | 0.89 | < 0.005 | 0.04    | -    | 0.04 | 0.04    | -       | 0.04    | - | 202  | 202  | 0.01    | < 0.005 | -    | 203  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | -    | _    | _       | _       | -    | _    | _       | _       | _       | - | _    | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmer      |         | 0.02    | 0.16 | 0.16 | < 0.005 | 0.01    | -    | 0.01 | 0.01    | -       | 0.01    | - | 33.5 | 33.5 | < 0.005 | < 0.005 | -    | 33.6 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _       | _       | _    | _    | _       | _       | -    | _    | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) |         | -       | _    | -    | -       |         | -    |      |         | _       | _       |   | _    | -    | -       | _       |      | -    |
| Worker                    | 0.04    | 0.04    | 0.03 | 0.45 | 0.00    | 0.00    | 0.06 | 0.06 | 0.00    | 0.01    | 0.01    | - | 70.9 | 70.9 | < 0.005 | < 0.005 | 0.27 | 72.1 |
| Vendor                    | < 0.005 | < 0.005 | 0.06 | 0.02 | < 0.005 | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | - | 47.2 | 47.2 | < 0.005 | 0.01    | 0.13 | 49.4 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | -       | _       | _       | _       |         | _       | _       | -       | _       |         | -       | _ | _    | _    | _       | _       |         | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker                    | 0.04    | 0.03    | 0.03    | 0.33    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 62.3 | 62.3 | < 0.005 | < 0.005 | 0.01    | 63.2 |
| Vendor                    | < 0.005 | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | - | 47.2 | 47.2 | < 0.005 | 0.01    | < 0.005 | 49.3 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | -       | —       | -       | —       | —       | -       | -       | -       | —       | -       | - | —    | -    | -       | _       | _       | -    |
| Worker                    | 0.01    | 0.01    | 0.01    | 0.08    | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 15.8 | 15.8 | < 0.005 | < 0.005 | 0.03    | 16.0 |
| Vendor                    | < 0.005 | < 0.005 | 0.02    | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 11.5 | 11.5 | < 0.005 | < 0.005 | 0.01    | 12.0 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | -       | _       | _       | -       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 2.61 | 2.61 | < 0.005 | < 0.005 | < 0.005 | 2.65 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.91 | 1.91 | < 0.005 | < 0.005 | < 0.005 | 1.99 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.14. Building Construction (2024) - Mitigated

| Location                  | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R    | CO2e |
|---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|------|------|
| Onsite                    | —    | —    | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —    | —    | —    |
| Daily,<br>Summer<br>(Max) |      | _    | _    | _    |      |       |       |       |        |        |        | _    |       |      |      |      |      |      |
| Off-Road<br>Equipmer      |      | 0.38 | 3.70 | 3.67 | 0.01 | 0.16  | _     | 0.16  | 0.14   |        | 0.14   | _    | 829   | 829  | 0.03 | 0.01 |      | 832  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | —    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | _    |      |      |      |       |       |       |        |        |        |      |       |      |      |      |      |      |

| Off-Road<br>Equipmen      |         | 0.38    | 3.70 | 3.67 | 0.01    | 0.16    | -       | 0.16    | 0.14    | _       | 0.14    | - | 829  | 829  | 0.03    | 0.01    | _       | 832  |
|---------------------------|---------|---------|------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          |         | _       | _    | _    | _       | _       | _       | -       | _       | _       | _       | - | —    | _    |         | -       | -       | -    |
| Off-Road<br>Equipmen      |         | 0.09    | 0.90 | 0.89 | < 0.005 | 0.04    | _       | 0.04    | 0.04    | —       | 0.04    | - | 202  | 202  | 0.01    | < 0.005 | -       | 203  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | —       | —       | -    | -    | —       | —       | -       | —       | —       | -       | -       | _ | —    | —    | —       | —       | —       | -    |
| Off-Road<br>Equipmen      |         | 0.02    | 0.16 | 0.16 | < 0.005 | 0.01    | _       | 0.01    | 0.01    | _       | 0.01    | - | 33.5 | 33.5 | < 0.005 | < 0.005 | -       | 33.6 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _    | _    | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) |         | -       | -    | -    | -       | -       | -       | _       |         |         |         | _ | _    | -    | -       | -       | _       | -    |
| Worker                    | 0.04    | 0.04    | 0.03 | 0.45 | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 70.9 | 70.9 | < 0.005 | < 0.005 | 0.27    | 72.1 |
| Vendor                    | < 0.005 | < 0.005 | 0.06 | 0.02 | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 47.2 | 47.2 | < 0.005 | 0.01    | 0.13    | 49.4 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) |         |         | -    | -    | -       | -       | -       | _       |         |         |         | _ | _    | -    | -       | -       | _       | -    |
| Worker                    | 0.04    | 0.03    | 0.03 | 0.33 | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 62.3 | 62.3 | < 0.005 | < 0.005 | 0.01    | 63.2 |
| Vendor                    | < 0.005 | < 0.005 | 0.06 | 0.02 | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 47.2 | 47.2 | < 0.005 | 0.01    | < 0.005 | 49.3 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          |         | _       | _    | _    | _       | _       |         | _       | _       |         | _       | - | _    | _    | _       | _       | _       | _    |
| Worker                    | 0.01    | 0.01    | 0.01 | 0.08 | 0.00    | 0.00    | 0.02    | 0.02    | 0.00    | < 0.005 | < 0.005 | _ | 15.8 | 15.8 | < 0.005 | < 0.005 | 0.03    | 16.0 |
| Vendor                    | < 0.005 | < 0.005 | 0.02 | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 11.5 | 11.5 | < 0.005 | < 0.005 | 0.01    | 12.0 |

| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual  | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | -    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 2.61 | 2.61 | < 0.005 | < 0.005 | < 0.005 | 2.65 |
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.91 | 1.91 | < 0.005 | < 0.005 | < 0.005 | 1.99 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.15. Building Construction (2024) - Unmitigated

|                           |      |      |      | <b>j</b> , |         | /     | · · · |       | , <b>,</b> , | , , , , , , , , , , , , , , , , , , , |        |      |       |      |         |         |      |      |
|---------------------------|------|------|------|------------|---------|-------|-------|-------|--------------|---------------------------------------|--------|------|-------|------|---------|---------|------|------|
| Location                  | TOG  | ROG  | NOx  | СО         | SO2     | PM10E | PM10D | PM10T | PM2.5E       | PM2.5D                                | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —    | _    | —    | —          | _       | —     | —     | —     | —            | —                                     | —      | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) |      | -    | _    | —          | _       | _     | —     | _     | —            |                                       | _      | _    | —     | —    | _       | _       | —    | —    |
| Off-Road<br>Equipmen      |      | 0.14 | 1.64 | 1.85       | < 0.005 | 0.05  | —     | 0.05  | 0.05         | —                                     | 0.05   | —    | 364   | 364  | 0.01    | < 0.005 | —    | 366  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00       | 0.00    | 0.00  | 0.00  | 0.00  | 0.00         | 0.00                                  | 0.00   | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | -    | -    | —          | _       | -     | —     | _     | —            |                                       | -      | _    | —     | —    | -       | _       | —    | _    |
| Off-Road<br>Equipmen      |      | 0.14 | 1.64 | 1.85       | < 0.005 | 0.05  | —     | 0.05  | 0.05         | —                                     | 0.05   | —    | 364   | 364  | 0.01    | < 0.005 | —    | 366  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00       | 0.00    | 0.00  | 0.00  | 0.00  | 0.00         | 0.00                                  | 0.00   | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _    | -    | -    | -          | -       | —     | -     | -     | -            | _                                     | -      | -    | —     | -    | _       | -       | —    | -    |
| Off-Road<br>Equipmen      |      | 0.02 | 0.29 | 0.33       | < 0.005 | 0.01  | -     | 0.01  | 0.01         | _                                     | 0.01   | -    | 64.9  | 64.9 | < 0.005 | < 0.005 | —    | 65.1 |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00       | 0.00    | 0.00  | 0.00  | 0.00  | 0.00         | 0.00                                  | 0.00   | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    |      |      | _    | _          | _       | _     | _     | _     | _            | _                                     | _      | _    | _     | _    | _       | _       | _    | _    |

| Off-Road<br>Equipmer      |         | < 0.005 | 0.05    | 0.06    | < 0.005 | < 0.005 | —       | < 0.005 | < 0.005 | —       | < 0.005 | — | 10.7 | 10.7 | < 0.005 | < 0.005 | —       | 10.8 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | -       | -       | _       |         |         | _       | -       | _       | -       | -       | _       | _ | -    | -    | -       | _       | -       | _    |
| Worker                    | 0.03    | 0.03    | 0.02    | 0.34    | 0.00    | 0.00    | 0.05    | 0.05    | 0.00    | 0.01    | 0.01    | - | 53.2 | 53.2 | < 0.005 | < 0.005 | 0.20    | 54.1 |
| Vendor                    | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 23.6 | 23.6 | < 0.005 | < 0.005 | 0.06    | 24.7 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | _       | -       |         |         |         | _       | _       |         |         | -       | _       | _ | -    | -    | -       | _       | _       | _    |
| Worker                    | 0.03    | 0.02    | 0.02    | 0.24    | 0.00    | 0.00    | 0.05    | 0.05    | 0.00    | 0.01    | 0.01    | _ | 46.7 | 46.7 | < 0.005 | < 0.005 | 0.01    | 47.4 |
| Vendor                    | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 23.6 | 23.6 | < 0.005 | < 0.005 | < 0.005 | 24.7 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | _       | _       | -       | _       | _       | _       | _       | _       | _       | —       | - | —    | -    | _       | —       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 8.64 | 8.64 | < 0.005 | < 0.005 | 0.02    | 8.77 |
| Vendor                    | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 4.20 | 4.20 | < 0.005 | < 0.005 | < 0.005 | 4.39 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | - | -    | _    | _       | _       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.43 | 1.43 | < 0.005 | < 0.005 | < 0.005 | 1.45 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.70 | 0.70 | < 0.005 | < 0.005 | < 0.005 | 0.73 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.16. Building Construction (2024) - Mitigated

| Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
|          |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |

| Onsite                    | _       | _       | _    | _    | _       | _       | _    | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
|---------------------------|---------|---------|------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Daily,<br>Summer<br>(Max) | —       | -       | _    | _    |         | —       | _    | -       | _       | _       | _       | - | —    | -    | -       | _       | —    | _    |
| Off-Road<br>Equipmer      |         | 0.14    | 1.64 | 1.85 | < 0.005 | 0.05    | -    | 0.05    | 0.05    | —       | 0.05    | - | 364  | 364  | 0.01    | < 0.005 | -    | 366  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         | -       | -    | -    | _       | -       | -    | -       | _       | -       | _       | - | -    | -    | -       |         | _    |      |
| Off-Road<br>Equipmer      |         | 0.14    | 1.64 | 1.85 | < 0.005 | 0.05    | -    | 0.05    | 0.05    | -       | 0.05    | - | 364  | 364  | 0.01    | < 0.005 | -    | 366  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —       | _       | _    | -    | -       | _       | _    | _       | -       | -       | -       | - | _    | -    | _       | -       | -    | -    |
| Off-Road<br>Equipmer      |         | 0.02    | 0.29 | 0.33 | < 0.005 | 0.01    | _    | 0.01    | 0.01    | -       | 0.01    | - | 64.9 | 64.9 | < 0.005 | < 0.005 | -    | 65.1 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | -    | _    | _       | _       | -    | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmer      |         | < 0.005 | 0.05 | 0.06 | < 0.005 | < 0.005 | —    | < 0.005 | < 0.005 | -       | < 0.005 | - | 10.7 | 10.7 | < 0.005 | < 0.005 | -    | 10.8 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _       | _       | _    | _    | _       | _       | -    | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) | _       | -       | _    | _    | _       | -       | _    | _       |         | _       |         | - | _    | -    | -       | _       | -    | -    |
| Worker                    | 0.03    | 0.03    | 0.02 | 0.34 | 0.00    | 0.00    | 0.05 | 0.05    | 0.00    | 0.01    | 0.01    | _ | 53.2 | 53.2 | < 0.005 | < 0.005 | 0.20 | 54.1 |
| Vendor                    | < 0.005 | < 0.005 | 0.03 | 0.01 | < 0.005 | < 0.005 | 0.01 | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 23.6 | 23.6 | < 0.005 | < 0.005 | 0.06 | 24.7 |
| Hauling                   | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | -       | _       | _       | _       | _       | _       | _       | -       | _       | _       | _       | - | _    | _    |         | -       | _       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker                    | 0.03    | 0.02    | 0.02    | 0.24    | 0.00    | 0.00    | 0.05    | 0.05    | 0.00    | 0.01    | 0.01    | _ | 46.7 | 46.7 | < 0.005 | < 0.005 | 0.01    | 47.4 |
| Vendor                    | < 0.005 | < 0.005 | 0.03    | 0.01    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | _ | 23.6 | 23.6 | < 0.005 | < 0.005 | < 0.005 | 24.7 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | -    | -    | -       | -       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.05    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 8.64 | 8.64 | < 0.005 | < 0.005 | 0.02    | 8.77 |
| Vendor                    | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 4.20 | 4.20 | < 0.005 | < 0.005 | < 0.005 | 4.39 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.43 | 1.43 | < 0.005 | < 0.005 | < 0.005 | 1.45 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.70 | 0.70 | < 0.005 | < 0.005 | < 0.005 | 0.73 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.17. Building Construction (2024) - Unmitigated

| Location                  | TOG  | ROG  |      | со   | SO2     | PM10E |      | PM10T | PM2.5E |      | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R    | CO2e |
|---------------------------|------|------|------|------|---------|-------|------|-------|--------|------|--------|------|-------|------|------|---------|------|------|
| Onsite                    | —    | —    | —    | —    | —       | —     | —    | —     | —      | —    | —      | —    | —     | —    | —    | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | _    | _    |      |      |         |       |      |       |        | —    | _      |      |       |      |      |         |      |      |
| Off-Road<br>Equipmen      |      | 0.09 | 0.80 | 0.81 | < 0.005 | 0.03  |      | 0.03  | 0.03   | _    | 0.03   |      | 138   | 138  | 0.01 | < 0.005 |      | 138  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   |      | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | _    |      |      |         |       |      |       |        |      |        |      |       |      |      |         |      |      |

| Average<br>Daily          | _             | _       | _       |         | _       | _       | _       | _       | _       | _       |         | _ | _    | _    | _       | _       | _       | _    |
|---------------------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Off-Road<br>Equipmen      |               | 0.01    | 0.11    | 0.11    | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -       | < 0.005 | - | 18.8 | 18.8 | < 0.005 | < 0.005 | —       | 18.9 |
| Onsite<br>truck           | 0.00          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _             | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmen      | < 0.005<br>it | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | -       | < 0.005 | _ | 3.12 | 3.12 | < 0.005 | < 0.005 | -       | 3.13 |
| Onsite<br>truck           | 0.00          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _             | _       | _       | -       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | -       | _       | _    |
| Daily,<br>Summer<br>(Max) |               | _       | -       |         | -       | _       | -       | -       | -       | _       |         | _ | -    | -    | _       | _       |         | _    |
| Worker                    | 0.03          | 0.03    | 0.02    | 0.34    | 0.00    | 0.00    | 0.05    | 0.05    | 0.00    | 0.01    | 0.01    | - | 53.2 | 53.2 | < 0.005 | < 0.005 | 0.20    | 54.1 |
| Vendor                    | < 0.005       | < 0.005 | 0.06    | 0.02    | < 0.005 | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | < 0.005 | - | 47.2 | 47.2 | < 0.005 | 0.01    | 0.13    | 49.4 |
| Hauling                   | 0.00          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) |               | -       | -       | _       | -       | -       | _       | -       | -       |         | -       |   | -    | -    | -       |         |         | _    |
| Average<br>Daily          | _             | -       | -       | _       | _       | -       | -       | -       | -       | -       | _       | - | _    | -    | _       | -       | -       | -    |
| Worker                    | < 0.005       | < 0.005 | < 0.005 | 0.04    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 6.64 | 6.64 | < 0.005 | < 0.005 | 0.01    | 6.75 |
| Vendor                    | < 0.005       | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 6.47 | 6.47 | < 0.005 | < 0.005 | 0.01    | 6.76 |
| Hauling                   | 0.00          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _             | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005       | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.10 | 1.10 | < 0.005 | < 0.005 | < 0.005 | 1.12 |
| Vendor                    | < 0.005       | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.07 | 1.07 | < 0.005 | < 0.005 | < 0.005 | 1.12 |
| Hauling                   | 0.00          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.18. Building Construction (2024) - Mitigated

| ontonia                   | onatar  |         | y lor dai | iy, toii/yi |         | aar) ana | ) 50110 | ib/duy io | r aany, n | ini, yi ioi | annaarj |      |       |      |         |         |      |      |
|---------------------------|---------|---------|-----------|-------------|---------|----------|---------|-----------|-----------|-------------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG     | ROG     | NOx       | со          | SO2     | PM10E    | PM10D   | PM10T     | PM2.5E    | PM2.5D      | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | _       | _       | _         | _           | -       | _        | _       | _         | _         | _           | _       | _    | —     | _    | _       | _       | _    | -    |
| Daily,<br>Summer<br>(Max) |         | -       | _         | -           | -       | _        | _       | -         | _         | _           | _       | _    | -     | _    | _       | _       | _    | -    |
| Off-Road<br>Equipmen      |         | 0.09    | 0.80      | 0.81        | < 0.005 | 0.03     | —       | 0.03      | 0.03      | —           | 0.03    | -    | 138   | 138  | 0.01    | < 0.005 | —    | 138  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00      | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00        | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         |         | _         |             |         | -        | -       |           | -         | _           | _       | _    | -     | _    | _       | -       | _    | -    |
| Average<br>Daily          |         | —       | _         | —           | _       | _        | _       | —         | _         | —           | -       | -    | —     | —    | —       | _       | _    | _    |
| Off-Road<br>Equipmen      |         | 0.01    | 0.11      | 0.11        | < 0.005 | < 0.005  | —       | < 0.005   | < 0.005   | —           | < 0.005 | _    | 18.8  | 18.8 | < 0.005 | < 0.005 | _    | 18.9 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00      | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00        | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | -       | -         | -           | -       | -        | -       | -         | -         | _           | _       | _    | -     | _    | _       | _       | _    | -    |
| Off-Road<br>Equipmen      |         | < 0.005 | 0.02      | 0.02        | < 0.005 | < 0.005  | _       | < 0.005   | < 0.005   | -           | < 0.005 | -    | 3.12  | 3.12 | < 0.005 | < 0.005 | _    | 3.13 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00      | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00        | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _       | _       | _         | _           | _       | _        | _       | _         | _         | _           | _       | _    | _     | _    | _       | _       | _    | -    |
| Daily,<br>Summer<br>(Max) | _       | _       | _         | _           | _       | -        | _       | _         | _         |             | _       | -    | -     | _    | _       | _       | _    | -    |
| Worker                    | 0.03    | 0.03    | 0.02      | 0.34        | 0.00    | 0.00     | 0.05    | 0.05      | 0.00      | 0.01        | 0.01    | _    | 53.2  | 53.2 | < 0.005 | < 0.005 | 0.20 | 54.1 |
| Vendor                    | < 0.005 | < 0.005 | 0.06      | 0.02        | < 0.005 | < 0.005  | 0.01    | 0.01      | < 0.005   | < 0.005     | < 0.005 | _    | 47.2  | 47.2 | < 0.005 | 0.01    | 0.13 | 49.4 |
| Hauling                   | 0.00    | 0.00    | 0.00      | 0.00        | 0.00    | 0.00     | 0.00    | 0.00      | 0.00      | 0.00        | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       | _       |         | _       | _       | _       | -       | _       | _ | -    | _    | -       |         | _       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Average<br>Daily          | -       | -       | _       | -       | _       | _       | -       | -       | -       | _       | _       | _ | -    | -    | -       | -       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.04    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | - | 6.64 | 6.64 | < 0.005 | < 0.005 | 0.01    | 6.75 |
| Vendor                    | < 0.005 | < 0.005 | 0.01    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 6.47 | 6.47 | < 0.005 | < 0.005 | 0.01    | 6.76 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | -       | _       | _       | _       | -       | _       | _ | _    | _    | _       | _       | -       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.10 | 1.10 | < 0.005 | < 0.005 | < 0.005 | 1.12 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 1.07 | 1.07 | < 0.005 | < 0.005 | < 0.005 | 1.12 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.19. Building Construction (2024) - Unmitigated

|                           |      |      | ,    | <u>,</u> |         | ,     | · · · |       | <b>,</b> | ,      |        |      |       |      |         |         |      |      |
|---------------------------|------|------|------|----------|---------|-------|-------|-------|----------|--------|--------|------|-------|------|---------|---------|------|------|
| Location                  | TOG  | ROG  | NOx  | со       | SO2     | PM10E | PM10D | PM10T | PM2.5E   | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    |      | —    | —    | —        | —       | —     | —     | —     |          | —      | —      | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | _    | _    | _    | _        | _       | _     | _     | _     |          |        |        |      |       | _    |         | _       |      | _    |
| Off-Road<br>Equipmen      |      | 0.30 | 3.00 | 4.29     | 0.01    | 0.13  | —     | 0.13  | 0.12     | —      | 0.12   |      | 718   | 718  | 0.03    | 0.01    | —    | 720  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00     | 0.00    | 0.00  | 0.00  | 0.00  | 0.00     | 0.00   | 0.00   |      | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | _    | _    | _        | _       | _     | _     | _     |          |        |        |      |       |      |         | _       |      | -    |
| Average<br>Daily          |      | _    | -    | -        | -       | -     | -     | —     | —        | —      |        |      |       | _    |         | -       | —    | —    |
| Off-Road<br>Equipmen      |      | 0.03 | 0.29 | 0.41     | < 0.005 | 0.01  | —     | 0.01  | 0.01     | _      | 0.01   |      | 68.8  | 68.8 | < 0.005 | < 0.005 |      | 69.1 |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                    | -       | -       | _       | -       | -       | —       | _       | -       | —       | —       | -       | - | -    | —    | _       | -       | —       | _    |
| Off-Road<br>Equipmer      |         | 0.01    | 0.05    | 0.08    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | -       | < 0.005 | - | 11.4 | 11.4 | < 0.005 | < 0.005 | -       | 11.4 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | _       | _       | _       | _       | -       | _       | -       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | -       |         | -       | -       | -       | _       | -       | -       |         | _       | _       | - | -    | _    | -       |         |         |      |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01    | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01    | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | -       | _       | -       | -       | _       | -       | -       | _       | _       | _       | _       | - | -    | -    | -       | _       | -       | _    |
| Average<br>Daily          | -       | -       | -       | -       | _       | -       | -       | -       | -       | -       | -       | - | -    | -    | —       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.29 | 0.29 | < 0.005 | < 0.005 | < 0.005 | 0.29 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.33 | 0.33 | < 0.005 | < 0.005 | < 0.005 | 0.34 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | —    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.05 | 0.05 | < 0.005 | < 0.005 | < 0.005 | 0.05 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.05 | 0.05 | < 0.005 | < 0.005 | < 0.005 | 0.06 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.20. Building Construction (2024) - Mitigated

| Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
|          |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |

| Onsite                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Daily,<br>Summer<br>(Max) |         | -       | -       | -       | _       | -       | -       | -       |         |         | _       | - | _    | -    | -       |         |      | -    |
| Off-Road<br>Equipmer      |         | 0.30    | 3.00    | 4.29    | 0.01    | 0.13    | -       | 0.13    | 0.12    | -       | 0.12    | - | 718  | 718  | 0.03    | 0.01    | -    | 720  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) | —       | _       | _       | _       | -       | -       | _       | _       | —       | _       | —       | - | -    | -    | -       | _       | —    | -    |
| Average<br>Daily          | —       | -       | _       | _       | —       | _       | _       | —       | -       | -       | -       | - | —    | -    |         | -       | -    | -    |
| Off-Road<br>Equipmer      |         | 0.03    | 0.29    | 0.41    | < 0.005 | 0.01    | _       | 0.01    | 0.01    | —       | 0.01    | — | 68.8 | 68.8 | < 0.005 | < 0.005 | —    | 69.1 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | -       | _ | _    | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmer      |         | 0.01    | 0.05    | 0.08    | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -       | < 0.005 | - | 11.4 | 11.4 | < 0.005 | < 0.005 | -    | 11.4 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | —       | —       | —       | -       | -       | -       | —       | -       | —       | —       | -       | - | —    | —    | —       | —       | -    | -    |
| Daily,<br>Summer<br>(Max) | —       | —       | -       | —       |         | —       | -       | -       |         | -       | —       | — | -    | —    | -       |         | —    | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01 | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01 | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       |         | _       | _       | _       |         | -       | _       | _ | -    | -    | _       | _       |      | -    |

| Average<br>Daily | -       | _       | _       | _       | -       | _       | -       | _       | _       | -       | -       | - | _    | _    | -       | -       | -       | -    |
|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.29 | 0.29 | < 0.005 | < 0.005 | < 0.005 | 0.29 |
| Vendor           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.33 | 0.33 | < 0.005 | < 0.005 | < 0.005 | 0.34 |
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual           | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | -    |
| Worker           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 0.05 | 0.05 | < 0.005 | < 0.005 | < 0.005 | 0.05 |
| Vendor           | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 0.05 | 0.05 | < 0.005 | < 0.005 | < 0.005 | 0.06 |
| Hauling          | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.21. Building Construction (2024) - Unmitigated

| omonia                    |      |      | j iei eiei |      |         |         |       |         |         | i i yi ioi |         |      | 1     |      |         |         |      |      |
|---------------------------|------|------|------------|------|---------|---------|-------|---------|---------|------------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG  | ROG  | NOx        | CO   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D     | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —    | —    | —          | _    | —       | —       | —     | —       | —       | —          | —       | _    | —     | —    | —       | —       | —    | _    |
| Daily,<br>Summer<br>(Max) |      | _    | —          | —    | —       | _       | _     | _       | —       | —          | _       | -    |       | _    | —       | -       | —    | —    |
| Off-Road<br>Equipmen      |      | 0.20 | 1.94       | 2.77 | < 0.005 | 0.10    | —     | 0.10    | 0.09    | _          | 0.09    | _    | 410   | 410  | 0.02    | < 0.005 | —    | 412  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00       | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00       | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | -    | _          | _    | _       | _       | -     | _       | —       |            | -       | _    |       | _    | _       | _       | _    | _    |
| Average<br>Daily          |      | —    | —          | —    | —       | —       | —     | —       | —       | —          | _       | _    | —     | _    | —       | _       | —    | _    |
| Off-Road<br>Equipmen      |      | 0.01 | 0.05       | 0.08 | < 0.005 | < 0.005 | -     | < 0.005 | < 0.005 | _          | < 0.005 | _    | 11.2  | 11.2 | < 0.005 | < 0.005 | -    | 11.3 |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00       | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00       | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _    | _    | _          | _    | _       | _       | _     | _       | _       | _          | _       | _    | -     | _    | _       | _       | _    | _    |

| Off-Road<br>Equipmen      |         | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | —       | < 0.005 | - | 1.86 | 1.86 | < 0.005 | < 0.005 | —       | 1.87 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | _       | _       | _       | _       | _       | _       | _       | -       | _       | _       | _       | _ | _    | -    | -       | _       |         | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01    | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01    | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | —       | _       |         |         | _       | _       | _       | _       | _       |         | _       | — | _    | -    | -       | _       |         | -    |
| Average<br>Daily          |         | _       | _       | _       |         | _       | _       | _       | _       | _       | -       | - | -    | -    | _       | _       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.08 | 0.08 | < 0.005 | < 0.005 | < 0.005 | 0.08 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 0.09 | 0.09 | < 0.005 | < 0.005 | < 0.005 | 0.10 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | -       | -       | -       | _       | _       | _       | _       | -       | _       | - | -    | _    | -       | -       | -       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | 0.01 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 0.02 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 0.02 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.22. Building Construction (2024) - Mitigated

| Location | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|----------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite   | -   | -   | —   | —  | —   | —     | —     | -     | —      | —      | —      | —    | —     | —    | -   | —   | — | _    |

| Daily,<br>Summer<br>(Max) |         | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Off-Road<br>Equipmen      |         | 0.20    | 1.94    | 2.77    | < 0.005 | 0.10    | —       | 0.10    | 0.09    | _       | 0.09    | — | 410  | 410  | 0.02    | < 0.005 | —    | 412  |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         | _       | _       | _       | _       | -       | _       | _       | _       | _       | -       | _ | _    | _    | -       | _       | —    | _    |
| Average<br>Daily          | _       | -       | -       | -       | _       | -       | -       | -       | -       | —       | _       | _ | _    | -    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |         | 0.01    | 0.05    | 0.08    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | —       | < 0.005 | — | 11.2 | 11.2 | < 0.005 | < 0.005 | —    | 11.3 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | —       | _       | _       | _       | -       | _       | _       | _       | _       | -       | -       | - | _    | _    | -       | -       | -    | -    |
| Off-Road<br>Equipmen      |         | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | —       | < 0.005 | — | 1.86 | 1.86 | < 0.005 | < 0.005 | _    | 1.87 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | —       | —       | —       | -       | —       | —       | —       | —       | _       | —       | —       | - | —    | _    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) |         | —       | _       | -       | —       | _       | _       | _       | —       | —       | —       | — |      | _    | -       | —       |      | —    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01 | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01 | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         | _       | _       | _       | _       | _       | _       | _       | _       | _       |         |   | _    | —    | -       | _       |      | _    |
| Average<br>Daily          | _       | _       | _       | _       | -       | _       | _       | _       | _       | -       | _       | _ | _    | -    | -       | -       | _    | _    |

| Worker  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.08 | 0.08 | < 0.005 | < 0.005 | < 0.005 | 0.08 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 0.09 | 0.09 | < 0.005 | < 0.005 | < 0.005 | 0.10 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual  | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | 0.01 |
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 0.02 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 0.02 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.23. Building Construction (2024) - Unmitigated

|                           | TOG  | ROG     | NOx  |      | SO2     | PM10E   | PM10D | PM10T   |         | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|---------------------------|------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                    | _    | _       | -    | _    | —       | —       | -     | -       | -       | -      | -       | -    | _     | -    | _       | _       | -    | -    |
| Daily,<br>Summer<br>(Max) |      | _       | —    |      |         |         | -     | _       | _       | -      | -       | —    | _     | _    |         | _       | _    | —    |
| Off-Road<br>Equipmen      |      | 0.15    | 1.40 | 1.55 | < 0.005 | 0.06    | —     | 0.06    | 0.05    | —      | 0.05    | _    | 308   | 308  | 0.01    | < 0.005 | —    | 309  |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | -       | _    | _    | _       |         | -     | _       | -       | -      | —       | -    | -     | -    | _       | -       | _    | -    |
| Average<br>Daily          |      | _       | —    | —    | —       | —       | _     | _       | _       | —      | —       | —    | _     | _    | _       | _       |      | —    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.04 | 0.04 | < 0.005 | < 0.005 | -     | < 0.005 | < 0.005 | -      | < 0.005 | -    | 8.44  | 8.44 | < 0.005 | < 0.005 | -    | 8.47 |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    |      | _       | _    | _    | _       | _       | _     | _       | _       | _      | _       | _    | _     | _    | _       | _       | _    | -    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | -     | < 0.005 | < 0.005 | —      | < 0.005 | _    | 1.40  | 1.40 | < 0.005 | < 0.005 | _    | 1.40 |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Offsite                   | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | -       | -       | _       | _       | _       | -       | -       | -       | -       |         | -       | - | -    | -    | -       | _       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01    | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01    | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | _       | _       |         | _       | _       | _       | _       | -       | -       | _       | _       | - | -    | —    | -       | _       | _       | -    |
| Average<br>Daily          | -       | -       | -       | -       | _       | -       | -       | -       | -       | -       | -       | - | —    | —    | —       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.08 | 0.08 | < 0.005 | < 0.005 | < 0.005 | 0.08 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.09 | 0.09 | < 0.005 | < 0.005 | < 0.005 | 0.10 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | -       | _       | _       | _ | _    | -    | _       | -       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | 0.01 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.02 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 0.02 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.24. Building Construction (2024) - Mitigated

| Location                  | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite                    | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Summer<br>(Max) | _   | -   | _   | -  | _   | _     |       |       |        |        | _      |      |       |      |     |     |   |      |

| Off-Road<br>Equipmen      |         | 0.15    | 1.40    | 1.55    | < 0.005 | 0.06    | —       | 0.06    | 0.05    | -       | 0.05    | - | 308  | 308  | 0.01    | < 0.005 | -       | 309  |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | _       | _       | _       |         |         | _       | _       | _       | _       | _       | -       | _ | -    | -    | -       | -       | _       | _    |
| Average<br>Daily          | —       | —       | —       | —       | —       | —       | —       | -       | -       | -       | -       | - | —    | —    | —       | -       | —       | -    |
| Off-Road<br>Equipmen      |         | < 0.005 | 0.04    | 0.04    | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -       | < 0.005 | - | 8.44 | 8.44 | < 0.005 | < 0.005 | -       | 8.47 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmen      |         | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -       | < 0.005 | - | 1.40 | 1.40 | < 0.005 | < 0.005 | -       | 1.40 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) |         | -       | -       |         |         | -       |         | _       | _       | -       | -       | - | -    | -    | -       | -       |         |      |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01    | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01    | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | _       | -       | _       | _       |         | _       | _       | _       | _       | _       | _       | _ | -    | -    | -       | -       | _       | _    |
| Average<br>Daily          | _       |         | _       |         | _       | _       |         |         | _       | _       | _       | - | _    | _    |         | —       |         |      |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.08 | 0.08 | < 0.005 | < 0.005 | < 0.005 | 0.08 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.09 | 0.09 | < 0.005 | < 0.005 | < 0.005 | 0.10 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

| Annual  | _       | _       | _       | _       | _       | _       | —       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 0.01 | 0.01 | < 0.005 | < 0.005 | < 0.005 | 0.01 |
| Vendor  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.02 | 0.02 | < 0.005 | < 0.005 | < 0.005 | 0.02 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.25. Building Construction (2024) - Unmitigated

|                           |      |      | <u>,</u> | .,, . <b>.</b> ,. |         |         | (     | , <b>,</b> | · •.•   |        |         |      |       |      |         |         |      |          |
|---------------------------|------|------|----------|-------------------|---------|---------|-------|------------|---------|--------|---------|------|-------|------|---------|---------|------|----------|
| Location                  | TOG  | ROG  | NOx      | со                | SO2     | PM10E   | PM10D | PM10T      | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e     |
| Onsite                    | _    | —    | —        | —                 | —       | —       | —     | —          | —       | —      | —       | —    | _     | —    | —       | —       | —    | —        |
| Daily,<br>Summer<br>(Max) |      |      | _        | _                 | _       |         |       | _          | —       | _      | -       | _    | _     | _    | _       | _       | _    |          |
| Off-Road<br>Equipmen      |      | 0.25 | 2.50     | 3.96              | 0.01    | 0.11    | —     | 0.11       | 0.10    | _      | 0.10    | _    | 600   | 600  | 0.02    | < 0.005 | _    | 602      |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00     | 0.00              | 0.00    | 0.00    | 0.00  | 0.00       | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     |
| Daily,<br>Winter<br>(Max) |      | _    | _        | _                 | _       | _       | _     | _          | _       | _      | _       | _    | _     | _    | _       | _       | _    | —        |
| Average<br>Daily          |      | —    | _        | _                 | _       | —       | —     | —          | —       |        | _       | _    | —     | —    | _       | _       | _    | _        |
| Off-Road<br>Equipmen      |      | 0.03 | 0.31     | 0.49              | < 0.005 | 0.01    | —     | 0.01       | 0.01    | _      | 0.01    | _    | 74.0  | 74.0 | < 0.005 | < 0.005 | _    | 74.2     |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00     | 0.00              | 0.00    | 0.00    | 0.00  | 0.00       | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     |
| Annual                    | —    | —    | —        | —                 | —       | —       | —     | —          | —       | —      | —       | —    | —     | —    | —       | _       | —    | —        |
| Off-Road<br>Equipmen      |      | 0.01 | 0.06     | 0.09              | < 0.005 | < 0.005 | -     | < 0.005    | < 0.005 | -      | < 0.005 | _    | 12.2  | 12.2 | < 0.005 | < 0.005 | —    | 12.3     |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00     | 0.00              | 0.00    | 0.00    | 0.00  | 0.00       | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00     |
| Offsite                   | —    | _    | _        | _                 | _       | —       | _     | -          | _       | _      | _       | _    | _     | _    | _       | _       | _    | <u> </u> |

| Daily,<br>Summer<br>(Max) | -       | _       | -       | -       | _       | _       | -       | -       | _       | _       | _       | _ | -    | _    | -       | _       | _       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01    | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01    | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | -       | _       | -       | -       | _       | _       | -       | -       | -       |         | -       | _ | _    | -    | -       | _       | -       | -    |
| Average<br>Daily          | -       | _       | -       | -       | _       | —       | -       | -       | -       | _       | _       | - | —    | -    | —       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 0.37 | 0.37 | < 0.005 | < 0.005 | < 0.005 | 0.38 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 0.42 | 0.42 | < 0.005 | < 0.005 | < 0.005 | 0.44 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.06 | 0.06 | < 0.005 | < 0.005 | < 0.005 | 0.06 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.07 | 0.07 | < 0.005 | < 0.005 | < 0.005 | 0.07 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.26. Building Construction (2024) - Mitigated

| Location                  | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R    | CO2e |
|---------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|------|------|
| Onsite                    | —    | —    | —    | —    | —    | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | —    | _    |      | _    | _    |       |       |       |        |        |        | _    |       | —    | _    |         |      | —    |
| Off-Road<br>Equipmen      |      | 0.25 | 2.50 | 3.96 | 0.01 | 0.11  | _     | 0.11  | 0.10   | —      | 0.10   | —    | 600   | 600  | 0.02 | < 0.005 | —    | 602  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       |         | _       | _       | _       | _       | _       | _       | _ |      | _    | _       | _       | _       | -    |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Average<br>Daily          | —       | —       | _       | _       | —       | _       | _       | _       |         | _       | —       | — | —    | _    |         | -       | —       | —    |
| Off-Road<br>Equipmer      |         | 0.03    | 0.31    | 0.49    | < 0.005 | 0.01    | —       | 0.01    | 0.01    | _       | 0.01    | - | 74.0 | 74.0 | < 0.005 | < 0.005 | -       | 74.2 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmer      |         | 0.01    | 0.06    | 0.09    | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | _       | < 0.005 | - | 12.2 | 12.2 | < 0.005 | < 0.005 | -       | 12.3 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | _       | _       | -       | _       |         | _       | -       | _       | _       | _       | -       | _ |      | -    | -       | -       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 3.29 | 3.29 | < 0.005 | < 0.005 | 0.01    | 3.35 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | - | 3.42 | 3.42 | < 0.005 | < 0.005 | 0.01    | 3.58 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | -       | -       | -       | _       |         | _       | -       | _       | _       | _       | -       | - | _    | -    | -       | -       | -       | -    |
| Average<br>Daily          | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | -       | - | -    | -    | -       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.37 | 0.37 | < 0.005 | < 0.005 | < 0.005 | 0.38 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.42 | 0.42 | < 0.005 | < 0.005 | < 0.005 | 0.44 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | —       | _       | _       | _       | _       | _       | —       | _ | _    | _    | —       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.06 | 0.06 | < 0.005 | < 0.005 | < 0.005 | 0.06 |
| Vendor                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | 0.07 | 0.07 | < 0.005 | < 0.005 | < 0.005 | 0.07 |

|         |      |      |      | 1    | 1    | I    |      |      |      | 1    | 1    |   | I    |      |      |      | T    |      |
|---------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------|
| Hauling | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## 3.27. Paving (2024) - Unmitigated

| •                         |      |         | y ior aar | .,, .e,. |         |         |       |         | i dany, ii | 11/91 101 | annaarj |      |       |      |         |         |      |      |
|---------------------------|------|---------|-----------|----------|---------|---------|-------|---------|------------|-----------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG  | ROG     | NOx       | со       | SO2     | PM10E   | PM10D | PM10T   | PM2.5E     | PM2.5D    | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —    | —       | —         | —        | —       | —       | —     | —       | —          | —         | —       | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | —    | _       | -         | —        | _       | _       | —     | _       | _          | _         | _       | —    | _     | _    | -       |         | —    | -    |
| Daily,<br>Winter<br>(Max) | _    | _       | _         | -        | _       | _       | _     | _       | _          | _         | _       | _    | _     | _    | _       | _       | _    | -    |
| Off-Road<br>Equipmen      |      | 0.32    | 2.70      | 3.13     | 0.01    | 0.13    | -     | 0.13    | 0.12       | —         | 0.12    | —    | 487   | 487  | 0.02    | < 0.005 | —    | 488  |
| Paving                    | —    | < 0.005 | —         | —        | —       | _       | —     | —       | —          | —         | —       | —    | —     | —    | —       | —       | —    | —    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00      | 0.00     | 0.00    | 0.00    | 0.00  | 0.00    | 0.00       | 0.00      | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —    | —       | —         | _        | —       | —       | -     | _       | _          | -         | _       | _    | _     | _    | -       | —       | —    | -    |
| Off-Road<br>Equipmen      |      | 0.01    | 0.12      | 0.14     | < 0.005 | 0.01    | -     | 0.01    | 0.01       | -         | 0.01    | _    | 21.9  | 21.9 | < 0.005 | < 0.005 | -    | 22.0 |
| Paving                    | _    | < 0.005 | _         | _        | -       | _       | _     | _       | _          | _         | _       | _    | _     | _    | _       | _       | _    | _    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00      | 0.00     | 0.00    | 0.00    | 0.00  | 0.00    | 0.00       | 0.00      | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _    | -       | _         | _        | -       | _       | _     | _       | _          | _         | _       | _    | _     | _    | _       | _       | -    | -    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.02      | 0.03     | < 0.005 | < 0.005 | -     | < 0.005 | < 0.005    | -         | < 0.005 | _    | 3.63  | 3.63 | < 0.005 | < 0.005 | _    | 3.64 |
| Paving                    | _    | < 0.005 | _         | _        | _       | _       | _     | _       | _          | _         | _       | _    | _     | _    | _       | _       | _    | _    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00      | 0.00     | 0.00    | 0.00    | 0.00  | 0.00    | 0.00       | 0.00      | 0.00    |      | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _    | _       | _         | _        | _       | _       | _     | _       | _          | _         | _       | _    | _     | _    | _       | _       | _    | _    |

| Daily,<br>Summer<br>(Max) | _       | -       | -       | -    | _    | -    | -       | -       | _    | -       | _       | _ | -    | -    | -       | -       | -       | -    |
|---------------------------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Daily,<br>Winter<br>(Max) |         | -       | -       | -    | _    | -    | -       |         |      | -       |         |   | -    | -    | -       |         |         | -    |
| Worker                    | 0.08    | 0.07    | 0.07    | 0.71 | 0.00 | 0.00 | 0.14    | 0.14    | 0.00 | 0.03    | 0.03    | - | 136  | 136  | 0.01    | 0.01    | 0.02    | 138  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | —       | —       | —       | _    | -    | —    | —       | —       | -    | —       | —       | - | —    | -    | -       | —       | —       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | _ | 6.37 | 6.37 | < 0.005 | < 0.005 | 0.01    | 6.46 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | -    | _    | _    | _       | -       | _    | _       | _       | _ | _    | _    | _       | _       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.05 | 1.05 | < 0.005 | < 0.005 | < 0.005 | 1.07 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.28. Paving (2024) - Mitigated

| Location                  | TOG | ROG  |      | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R | CO2e |
|---------------------------|-----|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|---|------|
| Onsite                    | _   | —    | —    | _    | —    | —     | _     | —     | _      | _      | —      | —    | —     | —    | —    | _       | — | _    |
| Daily,<br>Summer<br>(Max) | _   | -    | _    | _    |      |       | _     |       | _      | _      | _      |      |       |      |      | _       | _ |      |
| Daily,<br>Winter<br>(Max) | —   | _    | _    |      |      |       | —     |       | —      | —      |        |      |       |      | _    |         |   |      |
| Off-Road<br>Equipmen      |     | 0.32 | 2.70 | 3.13 | 0.01 | 0.13  | _     | 0.13  | 0.12   | _      | 0.12   | —    | 487   | 487  | 0.02 | < 0.005 | _ | 488  |

| Paving                    | _       | < 0.005 | _       | _    | _       | _       | _    | _       | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |
|---------------------------|---------|---------|---------|------|---------|---------|------|---------|---------|---------|---------|---|------|------|---------|---------|------|------|
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —       | _       | -       | _    | _       | -       | _    | -       | -       | -       | _       | - | -    | _    | -       | -       | -    | -    |
| Off-Road<br>Equipmer      |         | 0.01    | 0.12    | 0.14 | < 0.005 | 0.01    | _    | 0.01    | 0.01    | -       | 0.01    | - | 21.9 | 21.9 | < 0.005 | < 0.005 | -    | 22.0 |
| Paving                    | _       | < 0.005 | _       | _    | -       | _       | _    | _       | _       | _       | _       | _ | _    | _    | -       | -       | _    | _    |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | —       | —       | —       | —    | —       | —       | -    | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | -    |
| Off-Road<br>Equipmer      |         | < 0.005 | 0.02    | 0.03 | < 0.005 | < 0.005 | _    | < 0.005 | < 0.005 | _       | < 0.005 | — | 3.63 | 3.63 | < 0.005 | < 0.005 | -    | 3.64 |
| Paving                    | —       | < 0.005 | —       | —    | —       | —       | -    | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | -    |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | —       | —       | —       | -    | —       | —       | -    | —       | —       | —       | —       | — | —    | —    | —       | —       | —    | -    |
| Daily,<br>Summer<br>(Max) | _       | _       | _       | -    | -       | _       | —    | _       |         | _       | _       | _ | _    | _    | —       | _       | -    | -    |
| Daily,<br>Winter<br>(Max) | _       | -       | -       | _    | -       |         |      |         |         |         |         | _ | _    | _    | -       | _       | _    | _    |
| Worker                    | 0.08    | 0.07    | 0.07    | 0.71 | 0.00    | 0.00    | 0.14 | 0.14    | 0.00    | 0.03    | 0.03    | _ | 136  | 136  | 0.01    | 0.01    | 0.02 | 138  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —       | _       | -       | _    | -       | -       | -    | -       | -       | -       | _       | - | -    | -    | -       | -       | -    | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00    | 0.00    | 0.01 | 0.01    | 0.00    | < 0.005 | < 0.005 | - | 6.37 | 6.37 | < 0.005 | < 0.005 | 0.01 | 6.46 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _       | _       | _       | _    | _       | _       | _    |         | _       | _       | _       | _ | _    | _    | _       | _       | _    | _    |

| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.05 | 1.05 | < 0.005 | < 0.005 | < 0.005 | 1.07 |
|---------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.29. Paving (2025) - Unmitigated

| Location                  | TOG  | ROG     | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|---------------------------|------|---------|------|------|---------|---------|-------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Onsite                    | _    | _       | —    | —    | —       | _       | _     | _       | _       | —      | _       | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) |      | _       | _    |      |         | -       | _     | -       | -       | —      | _       | -    | _     | -    | _       | _       | -    | -    |
| Daily,<br>Winter<br>(Max) | _    |         |      |      |         |         | _     | _       | —       | _      | —       | _    |       | —    |         | _       | _    | _    |
| Off-Road<br>Equipmen      |      | 0.31    | 2.62 | 3.13 | 0.01    | 0.12    | -     | 0.12    | 0.11    | -      | 0.11    | _    | 487   | 487  | 0.02    | < 0.005 | _    | 488  |
| Paving                    | _    | < 0.005 | _    | —    | -       | —       | _     | _       | _       | _      | _       | _    | _     | _    | _       | —       | _    | _    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —    | —       | -    | -    | —       | —       | -     | -       | -       | -      | -       | _    | -     | -    | -       | —       | _    | -    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.03 | 0.04 | < 0.005 | < 0.005 | -     | < 0.005 | < 0.005 | -      | < 0.005 | _    | 5.71  | 5.71 | < 0.005 | < 0.005 | _    | 5.73 |
| Paving                    | _    | < 0.005 | _    | _    | -       | _       | _     | -       | _       | _      | _       | _    | _     | -    | _       | _       | _    | _    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _    | _       | -    | -    | _       | _       | _     | _       | _       | _      | _       | _    | —     | _    | -       | _       | —    | —    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _      | < 0.005 | _    | 0.95  | 0.95 | < 0.005 | < 0.005 | _    | 0.95 |
| Paving                    | _    | < 0.005 | -    | _    | _       | _       | _     | _       | _       | _      | _       | _    | _     | _    | _       | _       | _    | _    |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
|                           |         |         |         |         |      |      |         |         |      |         |         |   |      |      |         |         |         |      |
| Offsite                   | _       | -       | -       | -       | -    | _    | _       | -       | -    | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | _       | _       | _       | _       | _    | _    | -       | _       | -    | -       | _       | - | _    | -    | -       | _       | _       | -    |
| Daily,<br>Winter<br>(Max) | _       |         | —       | —       |      | —    | _       | _       | _    | -       | _       | _ | _    | —    | -       | _       |         | —    |
| Worker                    | 0.07    | 0.07    | 0.06    | 0.65    | 0.00 | 0.00 | 0.14    | 0.14    | 0.00 | 0.03    | 0.03    | - | 133  | 133  | < 0.005 | 0.01    | 0.01    | 135  |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | -       | -       | -       | -    | -    | —       | -       | -    | —       | -       | - | —    | —    | —       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.62 | 1.62 | < 0.005 | < 0.005 | < 0.005 | 1.65 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _    | _    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 0.27 | 0.27 | < 0.005 | < 0.005 | < 0.005 | 0.27 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.30. Paving (2025) - Mitigated

| Location        | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|-----------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Onsite          | —   | —   | —   | —  | _   | —     | —     | _     | —      | —      | —      | —    | —     | —    | —   | —   | — | _    |
| Daily,          | _   | _   | _   | _  | _   | _     | —     | _     | _      | _      | _      | —    | _     | _    | _   | _   | _ | —    |
| Summer<br>(Max) |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |

| Daily,                    | _    | -       | _    | _    | _       | _       | -    | _       | _       | _    | _       | _ | _    | _    | _       | _       | _    | _    |
|---------------------------|------|---------|------|------|---------|---------|------|---------|---------|------|---------|---|------|------|---------|---------|------|------|
| Winter<br>(Max)           |      |         |      |      |         |         |      |         |         |      |         |   |      |      |         |         |      |      |
| Off-Road<br>Equipmer      |      | 0.31    | 2.62 | 3.13 | 0.01    | 0.12    | -    | 0.12    | 0.11    | -    | 0.11    | - | 487  | 487  | 0.02    | < 0.005 | -    | 488  |
| Paving                    | —    | < 0.005 | -    | —    | —       | —       | —    | —       | —       | —    | —       | — | —    | —    | —       | —       | —    | —    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _    | -       | -    | -    | —       | _       | -    | -       | -       | -    | -       | - | —    | —    | —       | -       | -    | -    |
| Off-Road<br>Equipmer      |      | < 0.005 | 0.03 | 0.04 | < 0.005 | < 0.005 | -    | < 0.005 | < 0.005 | -    | < 0.005 | - | 5.71 | 5.71 | < 0.005 | < 0.005 | -    | 5.73 |
| Paving                    | _    | < 0.005 | -    | _    | —       | -       | -    | —       | —       | -    | —       | _ | —    | —    | —       | -       | _    | -    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _    | —       | -    | _    | —       | —       | _    | —       | —       | —    | —       | _ | —    | -    | —       | —       | _    | -    |
| Off-Road<br>Equipmer      |      | < 0.005 | 0.01 | 0.01 | < 0.005 | < 0.005 | _    | < 0.005 | < 0.005 | -    | < 0.005 | - | 0.95 | 0.95 | < 0.005 | < 0.005 | -    | 0.95 |
| Paving                    | _    | < 0.005 | -    | _    | —       | —       | _    | —       | —       | _    | —       | _ | —    | -    | —       | —       | _    | -    |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | _ | _    | _    | _       | _       | _    | -    |
| Daily,<br>Summer<br>(Max) |      |         |      | _    | -       |         |      | _       |         | _    | -       | - | -    | -    | -       |         | -    | -    |
| Daily,<br>Winter<br>(Max) | _    | _       | _    | _    | -       |         | _    | _       |         | _    | _       | _ | -    | _    | -       |         | _    | _    |
| Worker                    | 0.07 | 0.07    | 0.06 | 0.65 | 0.00    | 0.00    | 0.14 | 0.14    | 0.00    | 0.03 | 0.03    | _ | 133  | 133  | < 0.005 | 0.01    | 0.01 | 135  |
| Vendor                    | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | —    | _       | _    | -    | _       | _       | -    | -       | -       | -    | -       | - | -    | —    | _       | _       | -    | -    |

| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.01    | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 1.62 | 1.62 | < 0.005 | < 0.005 | < 0.005 | 1.65 |
|---------|---------|---------|---------|---------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual  | —       | —       | —       | —       | —    | —    | —       | —       | —    | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 0.27 | 0.27 | < 0.005 | < 0.005 | < 0.005 | 0.27 |
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.31. Architectural Coating (2025) - Unmitigated

|                               | TOG  | ROG  | NOx  | со   | SO2     | PM10E   | PM10D | PM10T   | PM2.5E  |      | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
|-------------------------------|------|------|------|------|---------|---------|-------|---------|---------|------|---------|------|-------|------|---------|---------|------|------|
| Onsite                        | —    | —    | —    | —    | —       | _       | —     | —       | —       | —    | —       | —    | —     | —    | —       | -       | —    | —    |
| Daily,<br>Summer<br>(Max)     |      | _    | -    | -    | -       | _       | _     | _       | _       | _    | _       | -    | _     | _    | -       | _       | —    | _    |
| Daily,<br>Winter<br>(Max)     |      | _    | _    | _    | _       | —       | _     | _       | _       | _    | _       | —    | _     | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen          |      | 0.17 | 1.23 | 1.28 | < 0.005 | 0.04    | —     | 0.04    | 0.04    | —    | 0.04    | —    | 176   | 176  | 0.01    | < 0.005 | —    | 177  |
| Architect<br>ural<br>Coatings |      | 0.12 | _    | -    | -       |         | -     | _       | —       | _    | —       | -    | —     | -    | -       | -       |      | —    |
| Onsite<br>truck               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00  | 0.00    | 0.00    | 0.00 | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              | _    | -    | -    | —    | -       | —       | -     | -       | —       | -    | -       | —    | -     | -    | —       | -       | -    | -    |
| Off-Road<br>Equipmen          |      | 0.02 | 0.12 | 0.12 | < 0.005 | < 0.005 | _     | < 0.005 | < 0.005 | _    | < 0.005 | _    | 16.9  | 16.9 | < 0.005 | < 0.005 | _    | 17.0 |
| Architect<br>ural<br>Coatings |      | 0.01 | _    | _    | -       |         | -     | _       |         | _    | _       | _    | -     | _    | _       |         | _    | _    |

| Onsite<br>truck               | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|-------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                        | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmer          |         | < 0.005 | 0.02    | 0.02    | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | _       | < 0.005 | _ | 2.80 | 2.80 | < 0.005 | < 0.005 | -       | 2.81 |
| Architect<br>ural<br>Coatings | -       | < 0.005 | _       | _       | -       | _       | -       | -       | -       | -       | -       | - | _    | _    | _       | -       | -       | -    |
| Onsite<br>truck               | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                       | -       | _       | -       | -       | _       | _       | _       | _       | _       | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max)     | -       | -       |         | _       | -       |         | -       | -       | -       | -       | -       | - |      | -    | _       | -       | -       | -    |
| Daily,<br>Winter<br>(Max)     | _       | _       | _       | -       | -       | _       | -       | -       | -       | -       | -       | - | _    | -    | _       | -       | -       | -    |
| Worker                        | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 5.09 | 5.09 | < 0.005 | < 0.005 | < 0.005 | 5.16 |
| Vendor                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily              | -       | -       | -       | -       | -       | -       | -       | -       | -       | _       | -       | _ | -    | -    | -       | -       | -       | -    |
| Worker                        | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | - | 0.51 | 0.51 | < 0.005 | < 0.005 | < 0.005 | 0.51 |
| Vendor                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                        | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Worker                        | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | — | 0.08 | 0.08 | < 0.005 | < 0.005 | < 0.005 | 0.09 |
| Vendor                        | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 3.32. Architectural Coating (2025) - Mitigated

| Criteria Pollutants   | (lb/dav for dail | v. ton/vr for annual                    | ) and GHGs (lb/da | y for daily, MT/yr for annual) |
|-----------------------|------------------|-----------------------------------------|-------------------|--------------------------------|
| enterna i entatante i |                  | <i>y</i> , ton <i>a y</i> , ton anniaan |                   |                                |

| ontonia                       |      |         |      | . <u>,</u> , .e., |         |         | 01100 ( |         | · •.•   | ,      | annaarj |      |       |      |         |         |      |      |
|-------------------------------|------|---------|------|-------------------|---------|---------|---------|---------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Location                      | TOG  | ROG     | NOx  | со                | SO2     | PM10E   | PM10D   | PM10T   | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                        | _    | -       | -    | _                 | _       | -       | _       | _       | _       | -      | -       | -    | _     | -    | -       | -       | _    | -    |
| Daily,<br>Summer<br>(Max)     | _    | -       | -    | _                 | -       | -       | _       | -       | —       | _      | -       | -    | -     | _    | _       | _       | _    | -    |
| Daily,<br>Winter<br>(Max)     |      | —       | —    | _                 | —       | —       | _       | —       | _       | —      | —       | —    | —     | —    |         |         |      |      |
| Off-Road<br>Equipmen          |      | 0.17    | 1.23 | 1.28              | < 0.005 | 0.04    | _       | 0.04    | 0.04    |        | 0.04    |      | 176   | 176  | 0.01    | < 0.005 | _    | 177  |
| Architect<br>ural<br>Coatings | _    | 0.05    | _    | _                 | -       | _       | _       | -       | _       | _      | -       | —    | -     | —    | _       | _       | _    | —    |
| Onsite<br>truck               | 0.00 | 0.00    | 0.00 | 0.00              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily              | _    | -       | -    | -                 | _       | -       | -       | -       | -       | -      | —       | _    | -     | _    | -       | -       | -    | -    |
| Off-Road<br>Equipmen          |      | 0.02    | 0.12 | 0.12              | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -      | < 0.005 | -    | 16.9  | 16.9 | < 0.005 | < 0.005 | -    | 17.0 |
| Architect<br>ural<br>Coatings | _    | 0.01    | -    | -                 | -       | -       | -       | -       | _       | -      | -       |      | -     |      | _       | -       | -    | -    |
| Onsite<br>truck               | 0.00 | 0.00    | 0.00 | 0.00              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                        | _    | _       | _    | _                 | _       | _       | _       | _       | _       | _      | -       | -    | _     | -    | -       | -       | _    | -    |
| Off-Road<br>Equipmen          |      | < 0.005 | 0.02 | 0.02              | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -      | < 0.005 | _    | 2.80  | 2.80 | < 0.005 | < 0.005 | -    | 2.81 |
| Architect<br>ural<br>Coatings |      | < 0.005 | _    | _                 | _       | _       | _       | _       |         |        |         | _    |       | _    | _       |         |      | _    |
| Onsite<br>truck               | 0.00 | 0.00    | 0.00 | 0.00              | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00    |      | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                       | _    | _       | _    | _                 | _       | _       | _       | _       | _       | _      | _       | _    | _     | _    | _       | _       | _    | _    |

| Daily,<br>Summer<br>(Max) | _       |         |         | _       | _    | -    |         |         |      | _       | _       | - |      |      |         | _       | _       | -    |
|---------------------------|---------|---------|---------|---------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Daily,<br>Winter<br>(Max) | -       | -       |         | -       | -    | -    |         |         |      | -       |         | - | _    | -    |         | _       |         | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | _ | 5.09 | 5.09 | < 0.005 | < 0.005 | < 0.005 | 5.16 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | _       | _       | -       | -    | _    | -       | -       | -    | _       | -       | - | -    | -    | -       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 0.51 | 0.51 | < 0.005 | < 0.005 | < 0.005 | 0.51 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | -    | _    | _       | _       | _    | _       | _       | _ | —    | _    | _       | -       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 0.08 | 0.08 | < 0.005 | < 0.005 | < 0.005 | 0.09 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.33. Trenching (2024) - Unmitigated

| Location                  | TOG  | ROG  | NOx  | со   | SO2     | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R    | CO2e |
|---------------------------|------|------|------|------|---------|-------|-------|-------|--------|--------|--------|------|-------|------|------|---------|------|------|
| Onsite                    | —    | —    | —    | —    | —       | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —       | —    | —    |
| Daily,<br>Summer<br>(Max) |      |      | -    |      | _       |       |       |       |        |        |        | _    |       |      |      |         | —    | —    |
| Off-Road<br>Equipmen      |      | 0.19 | 1.67 | 2.39 | < 0.005 | 0.07  |       | 0.07  | 0.06   |        | 0.06   | —    | 338   | 338  | 0.01 | < 0.005 | —    | 339  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00 | 0.00    | 0.00  | 0.00  | 0.00  | 0.00   | 0.00   | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) |      | _       | _    | -    |         | _       | _    | _       | _       | _    |         |   | _    |      | —       |         | _    | _    |
|---------------------------|------|---------|------|------|---------|---------|------|---------|---------|------|---------|---|------|------|---------|---------|------|------|
| Off-Road<br>Equipmen      |      | 0.19    | 1.67 | 2.39 | < 0.005 | 0.07    | -    | 0.07    | 0.06    | -    | 0.06    | - | 338  | 338  | 0.01    | < 0.005 | -    | 339  |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _    | —       | _    | -    | _       | —       | —    | -       | -       | —    | -       | - | -    | -    | -       | -       | -    | -    |
| Off-Road<br>Equipmen      |      | 0.02    | 0.17 | 0.24 | < 0.005 | 0.01    | —    | 0.01    | 0.01    | —    | 0.01    | - | 34.2 | 34.2 | < 0.005 | < 0.005 | -    | 34.4 |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _    | _       | _    | _    | _       | _       | -    | _       | _       | _    | _       | _ | _    | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |      | < 0.005 | 0.03 | 0.04 | < 0.005 | < 0.005 | -    | < 0.005 | < 0.005 | -    | < 0.005 | - | 5.67 | 5.67 | < 0.005 | < 0.005 | -    | 5.69 |
| Onsite<br>truck           | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _    | _       | _    | _    | _       | _       | _    | _       | _       | _    | _       | _ | _    | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) |      | -       | -    | -    |         | -       | _    | -       |         | _    |         |   | _    | _    | -       |         | -    | -    |
| Worker                    | 0.04 | 0.04    | 0.02 | 0.42 | 0.00    | 0.00    | 0.06 | 0.06    | 0.00    | 0.01 | 0.01    | - | 66.5 | 66.5 | < 0.005 | < 0.005 | 0.26 | 67.6 |
| Vendor                    | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |      | _       | _    | -    |         | _       | —    | -       | _       | —    |         | _ | _    | _    | -       |         | —    | -    |
| Worker                    | 0.03 | 0.03    | 0.03 | 0.31 | 0.00    | 0.00    | 0.06 | 0.06    | 0.00    | 0.01 | 0.01    | _ | 58.4 | 58.4 | < 0.005 | < 0.005 | 0.01 | 59.2 |
| Vendor                    | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00 | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          | _    | -       | _    | _    | -       | _       | -    | _       | -       | -    | _       | - | -    | -    | -       | -       | -    | _    |

| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00 | 0.00 | 0.01    | 0.01    | 0.00 | < 0.005 | < 0.005 | _ | 6.14 | 6.14 | < 0.005 | < 0.005 | 0.01    | 6.24 |
|---------|---------|---------|---------|------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual  | —       | —       | —       | -    | —    | —    | —       | —       | —    | —       | —       | — | —    | —    | —       | —       | —       | —    |
| Worker  | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | — | 1.02 | 1.02 | < 0.005 | < 0.005 | < 0.005 | 1.03 |
| Vendor  | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | — | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.34. Trenching (2024) - Mitigated

| ernterna                  | enditai |      | ly for dan | iy, con, yr |         | any and |       | b/uay 101 | aany, n |        | annaarj |      |       |      |         |         |      |      |
|---------------------------|---------|------|------------|-------------|---------|---------|-------|-----------|---------|--------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG     | ROG  | NOx        | СО          | SO2     | PM10E   | PM10D | PM10T     | PM2.5E  | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —       | —    | —          | —           | —       | —       | —     | —         | —       | —      | —       | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | —       | -    | —          | -           | _       | _       | _     | _         | —       | —      | -       | -    | _     | _    | _       | -       | —    | —    |
| Off-Road<br>Equipmen      |         | 0.19 | 1.67       | 2.39        | < 0.005 | 0.07    | -     | 0.07      | 0.06    |        | 0.06    | -    | 338   | 338  | 0.01    | < 0.005 | —    | 339  |
| Onsite<br>truck           | 0.00    | 0.00 | 0.00       | 0.00        | 0.00    | 0.00    | 0.00  | 0.00      | 0.00    | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |         | —    | _          | -           | —       | —       | _     | _         |         |        | -       | -    | _     | -    | -       | _       | _    | —    |
| Off-Road<br>Equipmen      |         | 0.19 | 1.67       | 2.39        | < 0.005 | 0.07    | —     | 0.07      | 0.06    | —      | 0.06    | _    | 338   | 338  | 0.01    | < 0.005 | _    | 339  |
| Onsite<br>truck           | 0.00    | 0.00 | 0.00       | 0.00        | 0.00    | 0.00    | 0.00  | 0.00      | 0.00    | 0.00   | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Average<br>Daily          |         | -    | —          | _           | _       | _       | _     | _         | —       |        | _       | _    | _     | _    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |         | 0.02 | 0.17       | 0.24        | < 0.005 | 0.01    | —     | 0.01      | 0.01    | —      | 0.01    | —    | 34.2  | 34.2 | < 0.005 | < 0.005 | _    | 34.4 |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                    | _       | _       | _       | -    | _       | _       | _       | _       | -       | _       | _       | _ | _    | -    | _       | _       | _       | _    |
| Off-Road<br>Equipmer      |         | < 0.005 | 0.03    | 0.04 | < 0.005 | < 0.005 | _       | < 0.005 | < 0.005 | -       | < 0.005 | — | 5.67 | 5.67 | < 0.005 | < 0.005 | _       | 5.69 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | -    | _       | —       | -       | _       | -       | _       | —       | _ | —    | -    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | _       |         |         |      |         |         | _       | _       |         |         |         | - | _    | —    | -       |         | -       | _    |
| Worker                    | 0.04    | 0.04    | 0.02    | 0.42 | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 66.5 | 66.5 | < 0.005 | < 0.005 | 0.26    | 67.6 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | -       | _       |         | -    | _       | -       | -       | -       | _       | -       |         | - | _    | —    | -       | -       | -       | -    |
| Worker                    | 0.03    | 0.03    | 0.03    | 0.31 | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | _ | 58.4 | 58.4 | < 0.005 | < 0.005 | 0.01    | 59.2 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Average<br>Daily          | -       | _       | —       | —    | -       | —       | —       | -       | —       | -       | —       | - | -    | -    | _       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.03 | 0.00    | 0.00    | 0.01    | 0.01    | 0.00    | < 0.005 | < 0.005 | _ | 6.14 | 6.14 | < 0.005 | < 0.005 | 0.01    | 6.24 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | -    | _       | _       | _       | _       | _       | _       | _       | - | _    | -    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.01 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 1.02 | 1.02 | < 0.005 | < 0.005 | < 0.005 | 1.03 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

### 3.35. Trenching (2024) - Unmitigated

| emena                     | l enatan |         | y rer dar | ., .o., j. |         |         | 01100 ( | ib/day io | r aany, n | in yr ior | annaan  |      |       |      |         |         |      |      |
|---------------------------|----------|---------|-----------|------------|---------|---------|---------|-----------|-----------|-----------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG      | ROG     | NOx       | со         | SO2     | PM10E   | PM10D   | PM10T     | PM2.5E    | PM2.5D    | PM2.5T  | BCO2 | NBCO2 | СО2Т | CH4     | N2O     | R    | CO2e |
| Onsite                    | _        | -       | _         | —          | -       | -       | -       | -         | _         | _         | _       | -    | -     | _    | _       | -       | _    | _    |
| Daily,<br>Summer<br>(Max) |          | _       | -         | -          | _       | -       | -       | -         | -         | -         | -       | _    | _     | -    | _       | _       | _    | _    |
| Off-Road<br>Equipmen      |          | 0.09    | 0.87      | 1.16       | < 0.005 | 0.03    | —       | 0.03      | 0.03      | —         | 0.03    | —    | 175   | 175  | 0.01    | < 0.005 | —    | 176  |
| Onsite<br>truck           | 0.00     | 0.00    | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) |          | _       | -         | -          |         | _       | -       |           | _         | -         | _       | _    |       | _    | _       | _       | _    | _    |
| Average<br>Daily          |          | —       | _         | _          | —       | _       | _       | —         | _         | _         | _       | _    | —     |      | -       | _       | _    | —    |
| Off-Road<br>Equipmen      |          | 0.01    | 0.06      | 0.08       | < 0.005 | < 0.005 | _       | < 0.005   | < 0.005   | _         | < 0.005 | —    | 12.0  | 12.0 | < 0.005 | < 0.005 | —    | 12.0 |
| Onsite<br>truck           | 0.00     | 0.00    | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Annual                    | _        | —       | _         | -          | -       | -       | -       | -         | _         | -         | _       | -    | -     | -    | _       | -       | —    | —    |
| Off-Road<br>Equipmen      |          | < 0.005 | 0.01      | 0.01       | < 0.005 | < 0.005 | _       | < 0.005   | < 0.005   | _         | < 0.005 | -    | 1.99  | 1.99 | < 0.005 | < 0.005 | -    | 1.99 |
| Onsite<br>truck           | 0.00     | 0.00    | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Offsite                   | _        | _       | _         | _          | _       | _       | _       | _         | _         | _         | _       | _    | _     | _    | _       | _       | _    | _    |
| Daily,<br>Summer<br>(Max) |          | _       | -         | -          | _       | -       | -       | -         | -         | -         | -       | _    | -     | -    | -       | _       | _    | _    |
| Worker                    | 0.04     | 0.04    | 0.02      | 0.42       | 0.00    | 0.00    | 0.06    | 0.06      | 0.00      | 0.01      | 0.01    | _    | 66.5  | 66.5 | < 0.005 | < 0.005 | 0.26 | 67.6 |
| Vendor                    | 0.00     | 0.00    | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00    | -    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Hauling                   | 0.00     | 0.00    | 0.00      | 0.00       | 0.00    | 0.00    | 0.00    | 0.00      | 0.00      | 0.00      | 0.00    | _    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |

| Daily,<br>Winter<br>(Max) | _       | _       | _       | _       | -    |      | -       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | -    |
|---------------------------|---------|---------|---------|---------|------|------|---------|---------|------|---------|---------|---|------|------|---------|---------|---------|------|
| Average<br>Daily          | -       | _       | -       | _       | -    | -    | -       | -       | -    | _       | -       | - | -    | _    | -       | -       | _       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 4.15 | 4.15 | < 0.005 | < 0.005 | 0.01    | 4.22 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | _    | _    | _       | _       | _    | _       | _       | _ | _    | _    | _       | _       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00 | 0.00 | < 0.005 | < 0.005 | 0.00 | < 0.005 | < 0.005 | _ | 0.69 | 0.69 | < 0.005 | < 0.005 | < 0.005 | 0.70 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00 | 0.00 | 0.00    | 0.00    | 0.00 | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

## 3.36. Trenching (2024) - Mitigated

|                           |      |      | ,    | <i>.</i> , , |         | ,       | · · · |         | <u> </u> |        | · · · · |      |       |      |         |         |      |      |
|---------------------------|------|------|------|--------------|---------|---------|-------|---------|----------|--------|---------|------|-------|------|---------|---------|------|------|
| Location                  | TOG  | ROG  | NOx  | со           | SO2     | PM10E   | PM10D | PM10T   | PM2.5E   | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R    | CO2e |
| Onsite                    | —    | —    | —    | —            | —       | —       | —     | —       | —        | —      | —       | —    | —     | —    | —       | —       | —    | —    |
| Daily,<br>Summer<br>(Max) | _    | —    | _    | _            | _       | _       |       |         |          |        |         |      |       |      |         |         |      | _    |
| Off-Road<br>Equipmen      |      | 0.09 | 0.87 | 1.16         | < 0.005 | 0.03    | —     | 0.03    | 0.03     | _      | 0.03    | —    | 175   | 175  | 0.01    | < 0.005 | _    | 176  |
| Onsite<br>truck           | 0.00 | 0.00 | 0.00 | 0.00         | 0.00    | 0.00    | 0.00  | 0.00    | 0.00     | 0.00   | 0.00    | —    | 0.00  | 0.00 | 0.00    | 0.00    | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max) | _    | —    | _    | _            | _       | _       |       |         |          |        |         |      |       |      |         |         |      | _    |
| Average<br>Daily          | _    | -    | -    | -            | -       | -       | —     | _       | —        | _      | —       | —    | —     | —    | —       | —       | _    | —    |
| Off-Road<br>Equipmen      |      | 0.01 | 0.06 | 0.08         | < 0.005 | < 0.005 | —     | < 0.005 | < 0.005  | —      | < 0.005 | _    | 12.0  | 12.0 | < 0.005 | < 0.005 | _    | 12.0 |

| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|------|------|---------|---------|---------|------|
| Annual                    | -       | _       | _       | _       | _       | _       | -       | _       | _       | _       | _       | _ | -    | _    | _       | _       | _       | _    |
| Off-Road<br>Equipmer      |         | < 0.005 | 0.01    | 0.01    | < 0.005 | < 0.005 | -       | < 0.005 | < 0.005 | -       | < 0.005 | - | 1.99 | 1.99 | < 0.005 | < 0.005 | _       | 1.99 |
| Onsite<br>truck           | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Offsite                   | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | _       | - | _    | _    | _       | _       | _       | _    |
| Daily,<br>Summer<br>(Max) | _       | _       | _       | _       |         | _       | _       | -       | -       | _       |         | _ | -    | -    | -       | _       | _       | _    |
| Worker                    | 0.04    | 0.04    | 0.02    | 0.42    | 0.00    | 0.00    | 0.06    | 0.06    | 0.00    | 0.01    | 0.01    | - | 66.5 | 66.5 | < 0.005 | < 0.005 | 0.26    | 67.6 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Daily,<br>Winter<br>(Max) | -       |         |         | _       | -       |         | _       | -       |         | -       |         | - | -    | -    | -       | _       | -       | _    |
| Average<br>Daily          | -       | -       | _       | _       | -       | _       | -       | -       | -       | -       | _       | - | —    | —    | _       | -       | -       | -    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | 0.02    | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 4.15 | 4.15 | < 0.005 | < 0.005 | 0.01    | 4.22 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Annual                    | _       | _       | _       | _       | -       | _       | _       | _       | _       | _       | _       | _ | —    | _    | _       | -       | _       | _    |
| Worker                    | < 0.005 | < 0.005 | < 0.005 | < 0.005 | 0.00    | 0.00    | < 0.005 | < 0.005 | 0.00    | < 0.005 | < 0.005 | _ | 0.69 | 0.69 | < 0.005 | < 0.005 | < 0.005 | 0.70 |
| Vendor                    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | - | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |
| Hauling                   | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | _ | 0.00 | 0.00 | 0.00    | 0.00    | 0.00    | 0.00 |

# 4. Operations Emissions Details

# 4.1. Mobile Emissions by Land Use

#### 4.1.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| ontonia                       | l'onata |      | ay 101 de | any, ton, y |      | iuai) anu |       | 10, aay 10 | r aany, n | i i / yi ioi | annaar) |      |       |      |      |      |      |      |
|-------------------------------|---------|------|-----------|-------------|------|-----------|-------|------------|-----------|--------------|---------|------|-------|------|------|------|------|------|
| Land<br>Use                   | TOG     | ROG  | NOx       | СО          | SO2  | PM10E     | PM10D | PM10T      | PM2.5E    | PM2.5D       | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R    | CO2e |
| Daily,<br>Summer<br>(Max)     |         | _    | _         | -           | _    | -         | _     | _          | —         | _            | _       | _    | -     | _    | —    | _    | -    | —    |
| User<br>Defined<br>Industrial | 0.00    | 0.00 | 0.00      | 0.00        | 0.00 | 0.00      | 0.00  | 0.00       | 0.00      | 0.00         | 0.00    | _    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total                         | 0.00    | 0.00 | 0.00      | 0.00        | 0.00 | 0.00      | 0.00  | 0.00       | 0.00      | 0.00         | 0.00    | —    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)     |         | -    | -         | -           | _    | -         | _     | -          | -         | -            | -       | _    | -     | _    | -    | _    | -    | _    |
| User<br>Defined<br>Industrial | 0.00    | 0.00 | 0.00      | 0.00        | 0.00 | 0.00      | 0.00  | 0.00       | 0.00      | 0.00         | 0.00    | -    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total                         | 0.00    | 0.00 | 0.00      | 0.00        | 0.00 | 0.00      | 0.00  | 0.00       | 0.00      | 0.00         | 0.00    | -    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Annual                        | _       | —    | —         | —           | —    | —         | —     | —          | —         | —            | —       | —    | —     | —    | —    | —    | —    | —    |
| User<br>Defined<br>Industrial | 0.00    | 0.00 | 0.00      | 0.00        | 0.00 | 0.00      | 0.00  | 0.00       | 0.00      | 0.00         | 0.00    |      | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total                         | 0.00    | 0.00 | 0.00      | 0.00        | 0.00 | 0.00      | 0.00  | 0.00       | 0.00      | 0.00         | 0.00    | —    | 0.00  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

#### 4.1.2. Mitigated

| Land<br>Use               | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | _    |

| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|---|------|------|------|------|------|------|
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Daily,<br>Winter<br>(Max)     |      | _    | -    | —    | _    | _    | -    | _    | -    | -    | -    | - | _    | -    | -    | -    | -    | -    |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Annual                        | _    | _    | _    | -    | _    | _    | _    | _    | _    | _    | _    | _ | _    | _    | _    | _    | _    | _    |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

## 4.2. Energy

#### 4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Land<br>Use                   | TOG | ROG |   | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
|-------------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Daily,<br>Summer<br>(Max)     | —   | -   | — | —  | —   | —     | —     | —     | _      | —      | —      | —    | —     | _    | _    | _    | _ | —    |
| User<br>Defined<br>Industrial |     | -   | _ | _  |     |       | _     | _     |        |        |        | _    | 335   | 335  | 0.05 | 0.01 |   | 339  |
| Total                         | —   | -   | — | -  | —   | —     | —     | —     | —      | _      | —      | -    | 335   | 335  | 0.05 | 0.01 | — | 339  |
| Daily,<br>Winter<br>(Max)     |     | -   | _ | _  |     |       | _     |       |        |        |        | _    |       |      |      |      |   |      |

| User<br>Defined<br>Industrial |   | _ |   |   |   |   |   |   | _ |   |   | _ | 335  | 335  | 0.05 | 0.01    |   | 339  |
|-------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|------|------|------|---------|---|------|
| Total                         | — | — | — | — | — | — | — | — | — | — | — | — | 335  | 335  | 0.05 | 0.01    | — | 339  |
| Annual                        | — | — | — | — | — | — | — | — | — | — | — | — | —    | —    | —    | —       | — | —    |
| User<br>Defined<br>Industrial |   | _ | — |   |   | — |   |   |   |   | — |   | 55.5 | 55.5 | 0.01 | < 0.005 | — | 56.1 |
| Total                         | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | - | 55.5 | 55.5 | 0.01 | < 0.005 | _ | 56.1 |

### 4.2.2. Electricity Emissions By Land Use - Mitigated

|                               |     | (   | <b>,</b> | ., |     |       | · · · · | ,,    | ,,     |        | ,      |      |       |      |      |         |   |      |
|-------------------------------|-----|-----|----------|----|-----|-------|---------|-------|--------|--------|--------|------|-------|------|------|---------|---|------|
| Land<br>Use                   | TOG | ROG | NOx      | со | SO2 | PM10E | PM10D   | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O     | R | CO2e |
| Daily,<br>Summer<br>(Max)     | _   | —   | —        | -  | —   | -     | —       | —     | —      | —      | —      | —    | _     | _    | —    | -       | — | —    |
| User<br>Defined<br>Industrial |     | -   | -        | _  |     | _     |         |       |        |        |        |      | 335   | 335  | 0.05 | 0.01    | _ | 339  |
| Total                         | —   | —   | —        | —  | —   | —     | —       | —     | —      | _      | _      | —    | 335   | 335  | 0.05 | 0.01    | — | 339  |
| Daily,<br>Winter<br>(Max)     |     | —   | -        | _  |     | _     |         |       |        |        |        |      | _     | _    | -    | _       |   | _    |
| User<br>Defined<br>Industrial |     | —   | -        | _  |     | _     |         |       |        |        |        |      | 335   | 335  | 0.05 | 0.01    |   | 339  |
| Total                         | —   | —   | —        | —  | —   | —     | —       | —     | —      | —      | —      | —    | 335   | 335  | 0.05 | 0.01    | — | 339  |
| Annual                        | _   | —   | —        | —  | —   | —     | —       | —     | —      | —      | —      | —    | —     | —    | —    | —       | — | —    |
| User<br>Defined<br>Industrial |     | _   | _        | _  |     | _     |         |       |        |        |        |      | 55.5  | 55.5 | 0.01 | < 0.005 | _ | 56.1 |
| Total                         | —   | —   | —        | —  | _   | —     | —       | —     | —      | —      | —      | _    | 55.5  | 55.5 | 0.01 | < 0.005 | — | 56.1 |

#### 4.2.3. Natural Gas Emissions By Land Use - Unmitigated

| Land<br>Use                   | TOG  | ROG  | NOx  | со   | SO2  | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
|-------------------------------|------|------|------|------|------|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Daily,<br>Summer<br>(Max)     | —    | _    | —    | _    | -    | —     | _     | _     | _      | _      | -      | _    | _     | —    | -    | _    | — | -    |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  |       | 0.00  | 0.00   | _      | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | _ | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Daily,<br>Winter<br>(Max)     | —    | -    | —    | _    | -    | -     | _     | _     | -      | -      | -      | _    | -     | -    | -    | -    | - | -    |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | _     | 0.00  | 0.00   | _      | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | _ | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | —     | 0.00  | 0.00   | _      | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Annual                        | —    | —    | —    | _    | _    | —     | —     | -     | —      | _      | _      | _    | —     | _    | _    | —    | — | —    |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | _     | 0.00  | 0.00   | _      | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | _ | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | _     | 0.00  | 0.00   | _      | 0.00   | _    | 0.00  | 0.00 | 0.00 | 0.00 | _ | 0.00 |

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

#### 4.2.4. Natural Gas Emissions By Land Use - Mitigated

| Land<br>Use               | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      |      | _     | _    |     | _   |   | _    |

| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |   | 0.00 | 0.00 |   | 0.00 |   | 0.00 | 0.00 | 0.00 | 0.00 |   | 0.00 |
|-------------------------------|------|------|------|------|------|------|---|------|------|---|------|---|------|------|------|------|---|------|
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 | 0.00 | _ | 0.00 | — | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Daily,<br>Winter<br>(Max)     | —    | -    | -    | _    |      | -    |   | _    | -    |   |      | _ | _    |      |      |      |   |      |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |   | 0.00 | 0.00 |   | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 |   | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 |
| Annual                        | _    | _    | _    | _    | -    | _    | _ | _    | _    | _ | _    | _ | _    | _    | _    | _    | _ | _    |
| User<br>Defined<br>Industrial | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | — | 0.00 | 0.00 | — | 0.00 |   | 0.00 | 0.00 | 0.00 | 0.00 |   | 0.00 |
| Total                         | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 | 0.00 | _ | 0.00 | _ | 0.00 | 0.00 | 0.00 | 0.00 | _ | 0.00 |

## 4.3. Area Emissions by Source

#### 4.3.2. Unmitigated

|                               |     | · · ·   | ,   | <u> </u> |     |       | · ·   |       |        |        | /      |      |       |      |     |     |   |      |
|-------------------------------|-----|---------|-----|----------|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Source                        | TOG | ROG     | NOx | со       | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
| Daily,<br>Summer<br>(Max)     |     | -       |     | —        | -   | —     |       |       |        |        |        | —    |       |      | -   |     |   |      |
| Consum<br>er<br>Products      |     | 0.02    |     | _        | _   | _     |       |       |        |        |        | _    |       |      | -   |     |   | —    |
| Architect<br>ural<br>Coatings |     | < 0.005 |     | _        | _   | _     |       |       |        |        |        | _    |       |      | -   |     |   |      |
| Total                         | _   | 0.02    | _   | _        | _   | _     | _     | _     | _      |        |        | _    | _     | _    | _   | _   |   | _    |

| Daily,<br>Winter<br>(Max)     |   | _       |   | — | _ | _ |   |   |   |   |   |   |   |   |   |   | — |   |
|-------------------------------|---|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Consum<br>er<br>Products      |   | 0.02    |   | _ | _ | _ |   |   |   |   |   |   |   |   |   |   | _ | _ |
| Architect<br>ural<br>Coatings | — | < 0.005 |   | _ | - | _ |   |   |   |   |   |   |   |   |   |   | — |   |
| Total                         | — | 0.02    | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | _ |
| Annual                        | _ | _       | - | - | _ | _ | _ | - | — | — | - | - | _ | _ | _ | — | — | _ |
| Consum<br>er<br>Products      |   | < 0.005 | _ | _ | _ | - | — | _ | _ | _ | _ | _ | _ | — | — |   | — | _ |
| Architect<br>ural<br>Coatings | _ | < 0.005 | _ | _ | _ | _ | _ | — | _ | _ | _ | _ | _ | — | — | _ | _ | _ |
| Total                         | — | < 0.005 | _ | _ | _ | — | _ | _ | _ | _ | _ | — | — | _ | — | — | — | — |

#### 4.3.1. Mitigated

|                               |     |         |     |    |     |       | · · · | -     |        |        | · · · · |      |       |      |     |     |   |      |
|-------------------------------|-----|---------|-----|----|-----|-------|-------|-------|--------|--------|---------|------|-------|------|-----|-----|---|------|
| Source                        | TOG | ROG     | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T  | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
| Daily,<br>Summer<br>(Max)     | —   | _       |     |    |     |       | —     |       |        |        | —       | -    |       | —    |     | —   |   | —    |
| Consum<br>er<br>Products      |     | 0.02    |     |    |     |       |       |       |        |        |         | -    |       | -    |     | _   |   |      |
| Architect<br>ural<br>Coatings | _   | < 0.005 | _   | _  | _   |       |       | _     |        | _      |         | -    | _     | -    | _   | -   | _ | _    |
| Total                         | _   | 0.02    | _   | _  | -   | _     | _     | _     | _      | _      | _       | _    | —     | _    | _   | _   | — | _    |

| Daily,<br>Winter<br>(Max)     |   | _       |   | _ | _ | _ |   | _ | _ | — | _ | _ | — | — |   |   | — |   |
|-------------------------------|---|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Consum<br>er<br>Products      |   | 0.02    |   | _ | _ | _ |   | - | _ | _ | - | _ | _ |   |   |   | _ | _ |
| Architect<br>ural<br>Coatings | — | < 0.005 |   | _ | _ | _ |   | - | _ | _ | - | _ | _ |   |   |   | — |   |
| Total                         | — | 0.02    | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | _ |
| Annual                        | _ | _       | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| Consum<br>er<br>Products      |   | < 0.005 | _ | — | _ | - | _ | _ | - | _ | - | — | _ | _ | _ | _ | — | _ |
| Architect<br>ural<br>Coatings | _ | < 0.005 | _ | _ | — | _ | _ | _ | _ | _ | _ | _ | — | _ | _ | _ | _ | _ |
| Total                         | — | < 0.005 | — | — | — | — | _ | — | — | — | — | — | — | — | _ | — | — | — |

## 4.4. Water Emissions by Land Use

#### 4.4.2. Unmitigated

| Land<br>Use                   | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R | CO2e |
|-------------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|---------|---------|---|------|
| Daily,<br>Summer<br>(Max)     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —       | —       | — | —    |
| User<br>Defined<br>Industrial |     | —   |     | _  |     |       |       |       | _      |        |        | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 |   | 0.01 |
| Total                         | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 |   | 0.01 |

| Daily,<br>Winter<br>(Max)     |   |   |   |   |   | — |   |   |   |   |   | _    |         |         |         |         | _ | _       |
|-------------------------------|---|---|---|---|---|---|---|---|---|---|---|------|---------|---------|---------|---------|---|---------|
| User<br>Defined<br>Industrial |   |   |   |   |   |   |   |   |   |   | — | 0.00 | 0.01    | 0.01    | < 0.005 | < 0.005 |   | 0.01    |
| Total                         | — | — | — | — | — | — | — | — | — | — | — | 0.00 | 0.01    | 0.01    | < 0.005 | < 0.005 | — | 0.01    |
| Annual                        | _ | — | — | — | — | — | — | — | _ | — | — | _    | —       | _       | —       | _       | _ | -       |
| User<br>Defined<br>Industrial |   | _ |   |   | — |   | — |   | _ | _ | _ | 0.00 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | < 0.005 |
| Total                         |   | _ | _ | _ | _ | _ | _ |   |   | _ | _ | 0.00 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | _ | < 0.005 |

#### 4.4.1. Mitigated

| Land<br>Use                   | TOG | ROG |   | СО |   | PM10E |   | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4     | N2O     | R | CO2e |
|-------------------------------|-----|-----|---|----|---|-------|---|-------|--------|--------|--------|------|-------|------|---------|---------|---|------|
| Daily,<br>Summer<br>(Max)     |     | -   | — |    |   | —     |   |       |        |        |        |      |       |      | _       | -       | _ | -    |
| User<br>Defined<br>Industrial |     | _   |   |    |   | _     | _ |       |        |        |        | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 | _ | 0.01 |
| Total                         | —   | —   | — | —  | — | —     | — | —     | —      | —      | —      | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 | — | 0.01 |
| Daily,<br>Winter<br>(Max)     | —   | _   |   |    |   |       |   |       |        |        |        |      |       |      | _       | _       |   | -    |
| User<br>Defined<br>Industrial |     | _   |   |    |   |       |   |       |        |        |        | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 |   | 0.01 |
| Total                         | —   | -   | — | —  | — | —     | — | —     | —      | —      | —      | 0.00 | 0.01  | 0.01 | < 0.005 | < 0.005 | — | 0.01 |
| Annual                        |     | _   | _ | _  |   | _     | _ |       |        | _      | _      | _    | _     | _    | _       | _       | _ | _    |

| User<br>Defined<br>Industrial |   |   | _ | - | _ |   |   |   |   |   |   | 0.00 | < 0.005 | < 0.005 | < 0.005 | < 0.005 |   | < 0.005 |
|-------------------------------|---|---|---|---|---|---|---|---|---|---|---|------|---------|---------|---------|---------|---|---------|
| Total                         | _ | — | — | — | — | — | — | — | _ | — | — | 0.00 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | — | < 0.005 |

### 4.5. Waste Emissions by Land Use

#### 4.5.2. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                               |     |     |     | .,, .e,. |     |       |       |       | ,,, ,  |        |        |      |       |      |      |      |   |      |
|-------------------------------|-----|-----|-----|----------|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Land<br>Use                   | TOG | ROG | NOx | со       | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
| Daily,<br>Summer<br>(Max)     | —   | -   | _   | _        | -   | —     | _     | —     | —      | —      | _      | _    | -     | _    | -    | _    | _ | -    |
| User<br>Defined<br>Industrial |     | _   |     | —        |     | —     | —     | _     |        | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |   | 0.00 |
| Total                         | —   | —   | —   | —        | —   | —     | —     | —     | —      | _      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Daily,<br>Winter<br>(Max)     | —   | _   | _   | -        |     | _     | -     | -     | _      |        | -      | -    | _     | _    | -    | _    |   |      |
| User<br>Defined<br>Industrial | —   | —   | -   | —        | —   | —     | _     | _     |        |        | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Total                         | —   | —   | —   | —        | —   | —     | —     | —     | —      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Annual                        | —   | —   | —   | —        | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —    | — | —    |
| User<br>Defined<br>Industrial | _   | _   | _   | —        |     | _     | _     | _     | _      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |   | 0.00 |
| Total                         | —   | —   | —   | —        | —   | —     | —     | —     | —      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |

4.5.1. Mitigated

| Land<br>Use                   | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4  | N2O  | R | CO2e |
|-------------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|------|------|---|------|
| Daily,<br>Summer<br>(Max)     |     | —   | -   | -  | —   | —     |       |       |        |        |        | -    | -     | —    | -    | —    | _ | —    |
| User<br>Defined<br>Industrial |     | —   | -   | -  | -   | —     |       |       |        | —      | _      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | _ | 0.00 |
| Total                         | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Daily,<br>Winter<br>(Max)     | —   | _   | -   | _  | _   | _     |       |       |        |        |        | _    | _     | _    | -    | _    |   | _    |
| User<br>Defined<br>Industrial |     | —   | -   | _  | —   | —     |       |       |        |        |        | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | _ | 0.00 |
| Total                         | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |
| Annual                        | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —    | —    | — | —    |
| User<br>Defined<br>Industrial |     | _   | _   | _  | _   | _     |       | _     |        |        |        | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 |   | 0.00 |
| Total                         | _   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | 0.00 | 0.00  | 0.00 | 0.00 | 0.00 | — | 0.00 |

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

### 4.6. Refrigerant Emissions by Land Use

#### 4.6.1. Unmitigated

| Land<br>Use               | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   | —   | -   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — |      |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |

| Daily,<br>Winter<br>(Max) |   | _ |   | _ | _ |   |   | _ |   |   |   |   |   |   |   | — | — | — |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total                     | — | — | — | - | — | — | — | — | — | — | _ | - | — | — | — | — | — | — |
| Annual                    | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |   | _ | _ | — | _ | _ |
| Total                     | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |   | _ | _ | _ | _ | _ |

#### 4.6.2. Mitigated

### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           | TOG | ROG |   | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Use                       |     |     |   |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |
| Daily,<br>Summer<br>(Max) | _   | _   | _ | _  |     |       |       |       |        |        |        | _    |       |      | _   |     | — | _    |
| Total                     | —   | —   | — | —  | —   | _     | —     | —     |        | _      | —      | —    |       | _    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) | _   | _   | _ | _  |     |       |       |       |        |        |        | _    |       |      |     |     |   |      |
| Total                     | —   | -   | — | —  | _   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | _   | _ | —    |
| Annual                    | —   | _   | — | _  | —   | _     | _     | —     | _      | _      | _      | _    | —     | —    | —   | —   | — | _    |
| Total                     | _   | _   | — | —  | —   | _     | _     | _     |        |        | _      | _    | _     | —    | _   | —   | — | —    |

## 4.7. Offroad Emissions By Equipment Type

#### 4.7.1. Unmitigated

| Equipme | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| nt      |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |
| Туре    |     |     |     |    |     |       |       |       |        |        |        |      |       |      |     |     |   |      |

| Daily,<br>Summer<br>(Max) | _ | _ | _ | _ | _ | — |   | _ | _ | — | _ | — |   |   |   | — | _ | _ |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total                     | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
| Daily,<br>Winter<br>(Max) | - | _ | _ | - | _ | - | _ | - | _ | - | - | - |   |   |   | _ |   | _ |
| Total                     | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
| Annual                    | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| Total                     | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |

#### 4.7.2. Mitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           |     |     | ,   | , .e |     | any and |       | e, e.e. j . e . | •••••••••••••••••••••••••••••••••••••• |        |        |      |       |      |     |     |   |      |
|---------------------------|-----|-----|-----|------|-----|---------|-------|-----------------|----------------------------------------|--------|--------|------|-------|------|-----|-----|---|------|
| Equipme<br>nt<br>Type     | TOG | ROG | NOx | со   | SO2 | PM10E   | PM10D | PM10T           | PM2.5E                                 | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
| Daily,<br>Summer<br>(Max) | _   | —   | —   | —    | —   | —       | —     | —               | —                                      | —      | _      | —    | —     | —    | —   | —   | — | —    |
| Total                     | —   | —   | —   | —    | —   | —       | —     | —               | —                                      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) |     | _   |     |      |     | _       |       |                 |                                        |        |        |      |       |      |     |     |   | —    |
| Total                     | _   | _   | _   | _    | _   | _       | _     | _               | _                                      | _      | _      |      |       | _    | _   | _   | _ | _    |
| Annual                    | _   | _   | _   | _    | _   | _       | _     | _               | _                                      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Total                     |     | _   | _   | _    | _   | _       | _     | _               | _                                      | _      | _      | _    | _     | _    | _   | _   | _ | _    |

### 4.8. Stationary Emissions By Equipment Type

#### 4.8.1. Unmitigated

| Equipme<br>Type           | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     | —   | —   | —  | —   | —     |       |       |        | —      |        | —    | _     | —    | —   |     | — | —    |
| Total                     | —   | —   | —   | —  | —   |       | —     | _     | —      | —      | —      | —    | —     | —    | —   | —   | — | _    |
| Daily,<br>Winter<br>(Max) | _   |     |     | _  | _   |       |       |       |        |        |        | _    |       |      | _   |     |   |      |
| Total                     | —   | —   | —   | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | _    |
| Annual                    | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Total                     | _   | _   | _   | _  | _   | _     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |

#### 4.8.2. Mitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

| Equipme<br>nt<br>Type     | TOG | ROG |   | CO | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   |     |   |    |     |       |       | —     | —      | —      |        |      | —     | —    | —   |     | — | —    |
| Total                     | _   | _   | _ | _  | _   | _     | _     | —     | _      | —      | _      | _    | _     | _    | _   | _   | — | _    |
| Daily,<br>Winter<br>(Max) | _   | _   | _ | _  | _   | _     |       |       | _      | —      |        |      | _     |      | _   |     |   | —    |
| Total                     | _   | _   | _ | _  | _   | _     | _     | _     | _      | _      |        | _    | _     | _    | _   | _   |   | _    |
| Annual                    | _   | _   | _ | _  | _   | _     | _     | _     | _      | _      |        | _    | _     | _    | _   | _   | _ | _    |
| Total                     | _   | _   | _ | _  | _   | _     | _     | _     | _      | _      |        | _    | _     | _    | _   | _   |   | —    |

## 4.9. User Defined Emissions By Equipment Type

#### 4.9.1. Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           |     | · · | ,   | <i>J i j</i> |     | /     | ```   |       | <b>,</b> | ,      | ,      |      |       |      |     |     |   |      |
|---------------------------|-----|-----|-----|--------------|-----|-------|-------|-------|----------|--------|--------|------|-------|------|-----|-----|---|------|
| Equipme<br>nt<br>Type     | TOG | ROG | NOx | СО           | SO2 | PM10E | PM10D | PM10T | PM2.5E   | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
| Daily,<br>Summer<br>(Max) | —   | _   | _   | _            | _   | —     | —     | —     | _        | —      | —      | —    | —     | —    | —   | _   | — | —    |
| Total                     | —   | —   | —   | —            | —   | —     | —     | —     | —        | —      | —      | —    | —     | —    | _   | —   | — | —    |
| Daily,<br>Winter<br>(Max) | _   | _   | _   |              |     |       |       |       |          |        |        |      |       |      | _   |     |   |      |
| Total                     | _   | _   | _   | _            | _   | _     | _     | _     | _        | —      | _      | _    | _     | _    | _   | _   | _ | _    |
| Annual                    | _   | _   | _   | _            | _   | _     | _     | _     | _        | —      | _      | _    | _     | _    | _   | _   | _ | _    |
| Total                     | _   | _   | _   | _            | _   | _     | _     | _     | _        | _      | _      | _    | _     | _    | _   | _   | _ | —    |

#### 4.9.2. Mitigated

| Equipme<br>nt<br>Type     | TOG | ROG |   | СО | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|---|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     |     | — |    |     | —     |       | —     |        |        |        | _    | —     | —    | —   |     | — |      |
| Total                     | —   | —   | — | —  | —   | —     | —     | —     | —      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Daily,<br>Winter<br>(Max) |     | _   | _ | _  | _   |       |       | —     |        |        | _      | _    | _     |      | _   |     | — |      |
| Total                     | _   | _   | _ | _  | _   | —     | _     | _     | _      | _      | _      | _    | _     | _    | _   | _   | _ | _    |
| Annual                    | _   | _   | _ | _  | _   | _     | _     | _     | _      |        | _      | _    | _     | _    | _   | _   | _ | _    |
| Total                     | _   | _   | _ | _  | _   | _     | _     | _     |        |        | _      | _    | _     | _    | _   | _   |   | _    |

### 4.10. Soil Carbon Accumulation By Vegetation Type

#### 4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

|                           |     | · · · · · |     | <i>J</i> , <i>J</i> |     |       | · · · · · |       |        |        | · · · · · · |      |       |      |     |     |   |      |
|---------------------------|-----|-----------|-----|---------------------|-----|-------|-----------|-------|--------|--------|-------------|------|-------|------|-----|-----|---|------|
| Vegetatio<br>n            | TOG | ROG       | NOx | со                  | SO2 | PM10E | PM10D     | PM10T | PM2.5E | PM2.5D | PM2.5T      | BCO2 | NBCO2 | СО2Т | CH4 | N2O | R | CO2e |
| Daily,<br>Summer<br>(Max) |     | —         | —   | —                   | —   | —     | —         | —     |        | —      | —           | —    | —     | —    | —   | —   | — | —    |
| Urban                     | —   | —         | —   | —                   | —   | —     | —         | —     | —      | —      | —           | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Total                     | —   | —         | —   | —                   | —   | —     | —         | —     | —      | —      | —           | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Daily,<br>Winter<br>(Max) |     |           |     |                     |     | _     | —         |       |        |        |             |      | _     |      |     | _   |   |      |
| Urban                     | —   | —         | —   | —                   | —   | —     | —         | —     | _      | —      | —           | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Total                     | —   | —         | —   | —                   | —   | —     | —         | —     | —      | —      | —           | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Annual                    | —   | —         | —   | —                   | —   | —     | —         | —     | —      | —      | —           | —    | —     | —    | —   | —   | — | —    |
| Urban                     | —   | —         | _   | —                   | —   | —     | —         | —     | —      | —      | —           | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Total                     | —   | —         | —   | —                   | —   | —     | —         | —     | —      | —      | —           | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |

#### 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

|                           | TOG |   |   | СО |   | 1 | PM10D |   | PM2.5E |   |   | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|---|---|----|---|---|-------|---|--------|---|---|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | _   | — | — | —  | — | — | —     | _ | —      | — | _ |      | _     | —    | _   | _   | — | —    |
| Urban                     | _   | _ | _ | _  | _ | _ | _     | _ | _      | _ | _ | _    | 0.00  | 0.00 | _   | _   | _ | 0.00 |
| Total                     | _   | _ | _ | _  | _ | _ | _     | _ | _      | _ | _ | _    | 0.00  | 0.00 | _   | _   | _ | 0.00 |

| Daily,<br>Winter<br>(Max) | _ | _ | _ | — | _ | _ | _ | _ |   | _ | _ | — | _    | _    | — | _ |   | _    |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|------|------|---|---|---|------|
| Urban                     | — | _ | — | — | — | — | — | — |   | — | — | — | 0.00 | 0.00 | — | — | _ | 0.00 |
| Total                     | _ | _ | _ | _ | — | — | _ | — | — | — | - | — | 0.00 | 0.00 | — | — | — | 0.00 |
| Annual                    | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _    | _    | _ | _ | _ | _    |
| Urban                     | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | _ | _ | _ | 0.00 |
| Total                     | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0.00 | 0.00 | _ | _ | _ | 0.00 |

#### 4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

| Species                   | TOG | ROG      | NOx      | со | SO2      | PM10E    | PM10D    | PM10T    | PM2.5E   | PM2.5D   | PM2.5T   | BCO2 | NBCO2 | CO2T  | CH4 | N2O | R | CO2e  |
|---------------------------|-----|----------|----------|----|----------|----------|----------|----------|----------|----------|----------|------|-------|-------|-----|-----|---|-------|
| Daily,<br>Summer<br>(Max) | —   | -        | -        | —  | -        | -        | —        | —        | —        | -        | —        | _    | _     | —     | _   | —   | - | -     |
| Avoided                   | _   | —        | —        | —  | —        | —        | —        | —        | —        | —        | —        | —    | -     | —     | —   | —   | — | —     |
| Pine<br>Fern              | _   | > -0.005 | > -0.005 | _  | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | -    | -1.30 | -1.30 | -   | _   | _ | -1.30 |
| Carob                     | _   | > -0.005 | > -0.005 | _  | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _    | -0.79 | -0.79 | _   | _   | _ | -0.79 |
| tupelo                    | _   | > -0.005 | > -0.005 | _  | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _    | -0.86 | -0.86 | _   | _   | _ | -0.86 |
| Magnolia<br>Southern      |     | > -0.005 | > -0.005 | -  | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _    | -1.24 | -1.24 | -   | _   | _ | -1.24 |
| Subtotal                  | _   | > -0.005 | > -0.005 | _  | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005 | > -0.005 | > -0.005 | _    | -4.18 | -4.18 | _   | _   | _ | -4.18 |
| Sequest<br>ered           | _   | _        | _        | -  | -        | _        | _        | -        | _        | _        | -        | -    | _     | -     | -   | _   | _ | -     |
| Pine<br>Fern              | _   | -        | _        | -  | -        | _        | _        | _        | _        | _        | _        | _    | 0.00  | 0.00  | -   | _   | _ | 0.00  |
| Carob                     | _   | _        | _        | _  | _        | _        | _        | _        | _        | _        | _        | _    | 0.00  | 0.00  | _   | _   | _ | 0.00  |
| tupelo                    | _   | _        | _        | _  | _        | _        | _        | _        | _        | _        | _        | _    | -1.65 | -1.65 | _   | _   | _ | -1.65 |
| Magnolia<br>Southern      |     | _        | _        | -  | -        | _        | -        | -        | -        | _        | -        | -    | -3.59 | -3.59 | -   | _   | _ | -3.59 |

| Subtotal                  | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | -5.25 | -5.25 | _ | _ | _ | -5.25 |
|---------------------------|---|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|---|-------|-------|---|---|---|-------|
| Remove<br>d               | — | —        | —        | — | —        | _        | _        | -        | -        | —        | —        | - | —     | —     | - | — | — | -     |
| Pine<br>Fern              | _ | _        | 0.00     | _ | < 0.005  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | _ | _     | _     | - | _ | _ | _     |
| Carob                     | _ | _        | 0.00     | — | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | _ | -     | -     | — | - | - | _     |
| tupelo                    | _ | _        | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | _     | -     | _ | _ | _ | _     |
| Magnolia<br>Southern      | _ | _        | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | _     | _     | - | _ | _ | _     |
| Subtotal                  | _ | —        | > -0.005 | — | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | —     | -     | — | — | — | _     |
|                           | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | _     | _     | _ | _ | — | _     |
| Total                     | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005 | > -0.005 | > -0.005 | _ | -9.43 | -9.43 | _ | _ | _ | -9.43 |
| Daily,<br>Winter<br>(Max) | — | -        | -        | _ | -        | _        | _        | -        | _        | _        | -        | - | -     | _     | - | _ | _ | _     |
| Avoided                   | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | _     | _     | _ | _ | _ | _     |
| Pine<br>Fern              | _ | > -0.005 | > -0.005 | — | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | - | -1.30 | -1.30 | - | _ | _ | -1.30 |
| Carob                     | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | -0.79 | -0.79 | _ | _ | _ | -0.79 |
| tupelo                    | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | -0.86 | -0.86 | _ | _ | _ | -0.86 |
| Magnolia<br>Southern      | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | - | -1.24 | -1.24 | - | - | - | -1.24 |
| Subtotal                  | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005 | > -0.005 | > -0.005 | _ | -4.18 | -4.18 | _ | _ | _ | -4.18 |
| Sequest<br>ered           | _ | _        | —        | — | _        | _        | —        | -        | _        | _        | _        | - | _     | —     | - | - | - | -     |
| Pine<br>Fern              | — | _        | —        | — | _        | —        | —        | _        | —        | _        | _        | - | 0.00  | 0.00  | - | - | - | 0.00  |
| Carob                     | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | -        | _ | 0.00  | 0.00  | _ | - | _ | 0.00  |
| tupelo                    | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | -1.65 | -1.65 | _ | - | - | -1.65 |
| Magnolia<br>Southern      | _ | _        | _        | _ | _        | _        | _        | _        | —        | _        | _        | _ | -3.59 | -3.59 | - | _ | - | -3.59 |

| Subtotal             | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | -5.25 | -5.25 | _ | _ | _ | -5.25 |
|----------------------|---|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|---|-------|-------|---|---|---|-------|
| Remove<br>d          | _ | -        | -        | — | _        | —        | —        | —        | -        | _        | -        | - | _     | _     | _ | _ | _ | -     |
| Pine<br>Fern         | _ | -        | 0.00     | - | < 0.005  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | - | -     | _     | _ | _ | _ | _     |
| Carob                | _ | _        | 0.00     | _ | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | _ | _     | _     | _ | _ | - | _     |
| tupelo               | _ | _        | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | _     | _     | _ | _ | - | _     |
| Magnolia<br>Southern | — | —        | > -0.005 | — | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ |       | —     | — | _ | — | _     |
| Subtotal             | _ | —        | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | —     | —     | - | — | — | _     |
| _                    | _ | —        | —        | — | -        | —        | —        | —        | —        | —        | —        | - | _     | -     | - | - | - | _     |
| Total                | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | -0.01    | > -0.005 | > -0.005 | > -0.005 | _ | -9.43 | -9.43 | _ | _ | - | -9.43 |
| Annual               | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | _     | _     | _ | _ | _ | _     |
| Avoided              | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | _     | _     | _ | _ | _ | _     |
| Pine<br>Fern         | _ | > -0.005 | > -0.005 | - | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | - | -0.22 | -0.22 | _ | _ | _ | -0.22 |
| Carob                | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | -0.13 | -0.13 | _ | _ | _ | -0.13 |
| tupelo               | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | -0.14 | -0.14 | _ | _ | _ | -0.14 |
| Magnolia<br>Southern | _ | > -0.005 | > -0.005 | - | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | - | -0.21 | -0.21 | _ |   | _ | -0.21 |
| Subtotal             | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | -0.69 | -0.69 | _ | _ | _ | -0.69 |
| Sequest<br>ered      | _ | -        | -        | - |          | _        | _        | _        | -        | -        | -        | - | -     | _     | _ | _ | _ | -     |
| Pine<br>Fern         | _ | -        | -        | - | _        | -        | _        | —        | -        | -        | -        | - | 0.00  | 0.00  | _ |   | _ | 0.00  |
| Carob                | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | 0.00  | 0.00  | - | _ | - | 0.00  |
| tupelo               | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | -0.27 | -0.27 | _ | _ | - | -0.27 |
| Magnolia<br>Southern | _ | -        | -        | - | _        | —        | —        | _        | -        | -        | -        | - | -0.59 | -0.59 | - | - | — | -0.59 |
| Subtotal             | _ | _        | _        | _ | _        | _        | _        | _        | _        | _        | _        | _ | -0.87 | -0.87 | _ | _ | _ | -0.87 |

| Remove               | _ | _        | -        | _ | _        | _        | _        | _        |          | _        | _        | _ | _     | -     | _ | - | — | _     |
|----------------------|---|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|---|-------|-------|---|---|---|-------|
| Pine<br>Fern         | — | —        | 0.00     | — | < 0.005  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | — | —     | —     |   | — | — |       |
| Carob                | — | —        | 0.00     | — | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | — | —     | —     | — | — | — | —     |
| tupelo               | — | —        | > -0.005 | — | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | — | —     | —     | — | — | — | —     |
| Magnolia<br>Southern | _ | _        | > -0.005 | — | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | — | —     | —     |   | — | _ |       |
| Subtotal             | — | —        | > -0.005 | — | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | — | —     | —     | — | — | — | —     |
| —                    | _ | —        | —        | — | —        | —        | —        | _        | —        | _        | _        | — | _     | —     | _ | — | — | _     |
| Total                | _ | > -0.005 | > -0.005 | _ | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | > -0.005 | _ | -1.56 | -1.56 | — | — | — | -1.56 |

#### 4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

|                           |     |     |     | <i>J</i> , <i>J</i> |     | · ·   | L .   | ,     | <b>,</b> , | , , , , , , , , , , , , , , , , , , , | ,      |      |       |      |     |     |   |      |
|---------------------------|-----|-----|-----|---------------------|-----|-------|-------|-------|------------|---------------------------------------|--------|------|-------|------|-----|-----|---|------|
| Vegetatio<br>n            | TOG | ROG | NOx | со                  | SO2 | PM10E | PM10D | PM10T | PM2.5E     | PM2.5D                                | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
| Daily,<br>Summer<br>(Max) |     | _   | _   |                     | _   |       | _     |       |            |                                       | _      | _    | -     | _    | _   | _   | _ | _    |
| Urban                     | —   | —   | —   | —                   | —   | —     | —     | —     | —          | —                                     | —      | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Total                     | —   | —   | —   | —                   | _   | —     | —     | —     | —          | —                                     | —      | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Daily,<br>Winter<br>(Max) | _   | _   | _   | _                   | _   | _     | _     | _     | _          | _                                     | _      | _    | _     | _    | _   | _   | _ | _    |
| Urban                     | —   | —   | —   | —                   | —   | —     | —     | —     | —          | —                                     | —      | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Total                     | —   | —   | —   | —                   | _   | —     | —     | —     | —          | _                                     | —      | —    | 0.00  | 0.00 | —   | —   | — | 0.00 |
| Annual                    | _   | _   | —   | —                   | —   | —     | —     | —     | —          | _                                     | —      | -    | —     | —    | _   | _   | _ | _    |
| Urban                     | _   | _   | _   | _                   | _   | -     | -     | _     | -          | _                                     | -      | _    | 0.00  | 0.00 | _   | —   | _ | 0.00 |
| Total                     |     | _   | —   | _                   | _   | —     | _     | —     | —          | _                                     | _      | -    | 0.00  | 0.00 | _   | _   | _ | 0.00 |

### 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

| Land<br>Use               | TOG | ROG | NOx | со | SO2 | PM10E |   |   |   | PM2.5D |   | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|---|---|---|--------|---|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) | —   | -   | _   | -  | -   | -     |   | - | — |        |   | _    |       | —    | _   |     |   | -    |
| Urban                     | -   | —   | —   | —  | _   | _     | - | - | _ | —      | - | -    | 0.00  | 0.00 | -   | -   | - | 0.00 |
| Total                     | -   | _   | _   | _  | _   | _     | _ | _ | _ | _      | _ | _    | 0.00  | 0.00 | -   | _   | _ | 0.00 |
| Daily,<br>Winter<br>(Max) | -   | -   | _   | -  | -   | _     | _ | - | _ | _      | _ | -    | _     | _    | _   | _   | _ | -    |
| Urban                     | -   | _   | _   | _  | _   | _     | _ | _ | _ | _      | _ | _    | 0.00  | 0.00 | _   | _   | _ | 0.00 |
| Total                     | _   | _   | _   | _  | _   | _     | _ | _ | _ | _      | _ | _    | 0.00  | 0.00 | -   | _   | _ | 0.00 |
| Annual                    | _   | _   | _   | _  | _   | _     | _ | _ | _ | _      | _ | _    | _     | _    | _   | _   | _ | _    |
| Urban                     | _   | _   | _   | _  | _   | _     | _ | _ | _ | _      | _ | _    | 0.00  | 0.00 | _   | _   | _ | 0.00 |
| Total                     | _   | _   | _   | _  | _   | _     | _ | _ | _ | _      | _ | _    | 0.00  | 0.00 | _   | _   | _ | 0.00 |

#### Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

| Species                   | TOG | ROG | NOx | со | SO2 | PM10E | PM10D | PM10T | PM2.5E | PM2.5D | PM2.5T | BCO2 | NBCO2 | CO2T | CH4 | N2O | R | CO2e |
|---------------------------|-----|-----|-----|----|-----|-------|-------|-------|--------|--------|--------|------|-------|------|-----|-----|---|------|
| Daily,<br>Summer<br>(Max) |     |     |     |    |     | —     |       |       |        |        |        |      |       |      | _   |     | — | _    |
| Avoided                   | —   | —   | —   | —  | —   | —     | —     | —     |        | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Subtotal                  | —   | —   | —   | —  | —   | —     | —     | _     | _      | —      | —      | —    | —     | —    | —   | —   | — | —    |
| Sequest<br>ered           | _   | —   | —   | _  | _   | _     | _     | _     |        | —      | _      | —    | _     | _    | —   | —   | — | —    |
| Subtotal                  | _   | _   | _   | _  | _   | _     | _     |       |        | _      | _      | _    | _     | _    | _   | _   | _ | _    |

| Remove<br>d               | - | - | - | - | — | — | — | - | — | — | — | - | — | - | — | — | — | — |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Subtotal                  | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | — | — | _ | _ | _ | _ | — | _ |
| —                         | — | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | — | _ | — | _ | _ | _ | _ |
| Daily,<br>Winter<br>(Max) | _ | _ | _ | - | _ | _ | — | _ |   | _ | — | _ | — | - |   | _ |   |   |
| Avoided                   | — | — | — | — | _ | _ | — | — | — | — | — | — | — | — | — | — | _ | — |
| Subtotal                  | — | — | — | — |   | — | — | — | — | — | — | — | — | — | — | — | — | — |
| Sequest<br>ered           | — | — | - | - | _ | — | _ | — | — | — | — | — | — | - | — | — | — | — |
| Subtotal                  | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ |
| Remove<br>d               | — | _ | _ | _ |   | _ |   | _ | _ | _ | _ | _ | — | - | _ | — | _ | — |
| Subtotal                  | — | — | — | - | _ | — | — | - | — | — | — | _ | — | — | — | - | — | _ |
| _                         | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| Annual                    | — | — | — | - | _ | — | — | - | — | — | — | _ | — | — | - | - | — | — |
| Avoided                   | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ |
| Subtotal                  | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| Sequest<br>ered           | _ | _ | _ | - | _ | — | _ | - | _ | - | _ | - | — | - | _ | _ | — | — |
| Subtotal                  | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| Remove<br>d               | — | _ | — | _ |   |   |   | — |   | — |   | — | _ | _ | _ | — | — | — |
| Subtotal                  | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ |
| _                         | _ | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ |
|                           |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

# 5. Activity Data

# 5.1. Construction Schedule

| Phase Name                     | Phase Type                   | Start Date | End Date   | Days Per Week | Work Days per Phase | Phase Description                     |
|--------------------------------|------------------------------|------------|------------|---------------|---------------------|---------------------------------------|
| Demolition                     | Demolition                   | 12/2/2024  | 12/11/2024 | 5.00          | 8.00                | Sidewalk and Asphalt                  |
| Well Site Preparation          | Site Preparation             | 7/5/2023   | 7/19/2023  | 5.00          | 11.0                | Clearing and Grubbing                 |
| Rough Grading and<br>Over-ex   | Grading                      | 7/20/2023  | 8/14/2023  | 5.00          | 18.0                | Rough Grading                         |
| Finish Grading                 | Grading                      | 11/13/2024 | 12/27/2024 | 5.00          | 33.0                | Finish Grading                        |
| Well Drilling                  | Building Construction        | 9/25/2023  | 12/22/2023 | 5.00          | 65.0                | Well Drilling                         |
| Well Site Fencing              | Building Construction        | 8/15/2023  | 9/22/2023  | 5.00          | 29.0                | Block Wall and Gate                   |
| Building Construction          | Building Construction        | 1/2/2024   | 5/3/2024   | 5.00          | 89.0                | Building and foundations              |
| Water Tank                     | Building Construction        | 2/19/2024  | 5/17/2024  | 5.00          | 65.0                | Tank Construction and Coating         |
| Piping and Appurtenances       | Building Construction        | 6/17/2024  | 8/23/2024  | 5.00          | 50.0                | Above ground Piping and Appurtenances |
| Treatment System               | Building Construction        | 4/29/2024  | 6/14/2024  | 5.00          | 35.0                | Treatment System                      |
| Pump and Motor<br>Installation | Building Construction        | 4/1/2024   | 4/12/2024  | 5.00          | 10.0                | Well Pump and Motor                   |
| Hydropneumatic tank            | <b>Building Construction</b> | 4/15/2024  | 4/26/2024  | 5.00          | 10.0                | Hydropneumatic tank                   |
| Site Electrical Equip          | Building Construction        | 6/24/2024  | 8/23/2024  | 5.00          | 45.0                | Electrical equipment                  |
| Paving and Sidewalk            | Paving                       | 12/9/2024  | 1/6/2025   | 5.00          | 21.0                | At both tie-in locations              |
| Paint and coatings             | Architectural Coating        | 1/6/2025   | 2/21/2025  | 5.00          | 35.0                | Paint on Piping and Building          |
| Undg. Pipeline                 | Trenching                    | 9/23/2024  | 11/12/2024 | 5.00          | 37.0                | Within the Pipeline Easement          |
| Undg. Electrical               | Trenching                    | 8/26/2024  | 9/27/2024  | 5.00          | 25.0                | Underground Electrical                |

## 5.2. Off-Road Equipment

### 5.2.1. Unmitigated

|  | Phas | se Name | Equipment Type | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|--|------|---------|----------------|-----------|-------------|----------------|---------------|------------|-------------|
|--|------|---------|----------------|-----------|-------------|----------------|---------------|------------|-------------|

| Demolition                   | Concrete/Industrial<br>Saws   | Diesel | Average | 1.00 | 4.00 | 33.0 | 0.73 |
|------------------------------|-------------------------------|--------|---------|------|------|------|------|
| Demolition                   | Skid Steer Loaders            | Diesel | Average | 1.00 | 4.00 | 367  | 0.40 |
| Demolition                   | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 8.00 | 84.0 | 0.37 |
| Well Site Preparation        | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 148  | 0.41 |
| Well Site Preparation        | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Rough Grading and<br>Over-ex | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 148  | 0.41 |
| Rough Grading and<br>Over-ex | Rollers                       | Diesel | Average | 1.00 | 6.00 | 367  | 0.40 |
| Rough Grading and<br>Over-ex | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 7.00 | 84.0 | 0.37 |
| Finish Grading               | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 148  | 0.41 |
| Finish Grading               | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 5.00 | 84.0 | 0.37 |
| Well Drilling                | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Well Drilling                | Bore/Drill Rigs               | Diesel | Average | 1.00 | 8.00 | 83.0 | 0.50 |
| Well Drilling                | Forklifts                     | Diesel | Average | 1.00 | 5.00 | 82.0 | 0.20 |
| Well Drilling                | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Well Site Fencing            | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Building Construction        | Excavators                    | Diesel | Average | 1.00 | 2.00 | 82.0 | 0.20 |
| Building Construction        | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Building Construction        | Cranes                        | Diesel | Average | 1.00 | 4.00 | 367  | 0.29 |
| Building Construction        | Generator Sets                | Diesel | Average | 1.00 | 6.00 | 14.0 | 0.74 |

| Water Tank                     | Cranes                        | Diesel | Average | 1.00 | 1.00 | 367  | 0.29 |
|--------------------------------|-------------------------------|--------|---------|------|------|------|------|
| Water Tank                     | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 3.00 | 82.0 | 0.20 |
| Water Tank                     | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Water Tank                     | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 46.0 | 0.31 |
| Piping and<br>Appurtenances    | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Piping and<br>Appurtenances    | Generator Sets                | Diesel | Average | 1.00 | 5.00 | 14.0 | 0.74 |
| Treatment System               | Cranes                        | Diesel | Average | 1.00 | 1.00 | 367  | 0.29 |
| Treatment System               | Tractors/Loaders/Backh<br>oes | Diesel | Average | 2.00 | 8.00 | 84.0 | 0.37 |
| Treatment System               | Generator Sets                | Diesel | Average | 1.00 | 1.00 | 14.0 | 0.74 |
| Pump and Motor<br>Installation | Tractors/Loaders/Backh<br>oes | Diesel | Average | 2.00 | 6.00 | 82.0 | 0.20 |
| Pump and Motor<br>Installation | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 5.00 | 84.0 | 0.37 |
| Hydropneumatic tank            | Cranes                        | Diesel | Average | 1.00 | 1.00 | 367  | 0.29 |
| Hydropneumatic tank            | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 |
| Hydropneumatic tank            | Generator Sets                | Diesel | Average | 1.00 | 3.00 | 14.0 | 0.74 |
| Site Electrical Equip          | Forklifts                     | Diesel | Average | 1.00 | 1.00 | 82.0 | 0.20 |
| Site Electrical Equip          | Tractors/Loaders/Backh<br>oes | Diesel | Average | 2.00 | 8.00 | 84.0 | 0.37 |
| Paving and Sidewalk            | Cement and Mortar<br>Mixers   | Diesel | Average | 4.00 | 4.00 | 10.0 | 0.56 |
| Paving and Sidewalk            | Pavers                        | Diesel | Average | 1.00 | 4.00 | 81.0 | 0.42 |
| Paving and Sidewalk            | Rollers                       | Diesel | Average | 1.00 | 4.00 | 36.0 | 0.38 |
| Paving and Sidewalk            | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 |
| Paint and coatings             | Air Compressors               | Diesel | Average | 1.00 | 5.00 | 37.0 | 0.48 |

| Paint and coatings | Generator Sets                | Diesel | Average | 1.00 | 5.00 | 14.0 | 0.74 |
|--------------------|-------------------------------|--------|---------|------|------|------|------|
| Undg. Pipeline     | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Undg. Pipeline     | Excavators                    | Diesel | Average | 1.00 | 3.00 | 36.0 | 0.38 |
| Undg. Pipeline     | Air Compressors               | Diesel | Average | 1.00 | 3.00 | 37.0 | 0.48 |
| Undg. Electrical   | Excavators                    | Diesel | Average | 1.00 | 3.00 | 36.0 | 0.38 |
| Undg. Electrical   | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 3.00 | 84.0 | 0.37 |
| Undg. Electrical   | Generator Sets                | Diesel | Average | 1.00 | 1.00 | 14.0 | 0.74 |

#### 5.2.2. Mitigated

| Phase Name                   | Equipment Type                | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|------------------------------|-------------------------------|-----------|-------------|----------------|---------------|------------|-------------|
| Demolition                   | Concrete/Industrial<br>Saws   | Diesel    | Average     | 1.00           | 4.00          | 33.0       | 0.73        |
| Demolition                   | Skid Steer Loaders            | Diesel    | Average     | 1.00           | 4.00          | 367        | 0.40        |
| Demolition                   | Tractors/Loaders/Backh oes    | Diesel    | Average     | 1.00           | 8.00          | 84.0       | 0.37        |
| Well Site Preparation        | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 1.00           | 6.00          | 148        | 0.41        |
| Well Site Preparation        | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 1.00           | 6.00          | 84.0       | 0.37        |
| Rough Grading and<br>Over-ex | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 1.00           | 6.00          | 148        | 0.41        |
| Rough Grading and<br>Over-ex | Rollers                       | Diesel    | Average     | 1.00           | 6.00          | 367        | 0.40        |
| Rough Grading and<br>Over-ex | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 1.00           | 7.00          | 84.0       | 0.37        |
| Finish Grading               | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 1.00           | 6.00          | 148        | 0.41        |
| Finish Grading               | Tractors/Loaders/Backh<br>oes | Diesel    | Average     | 1.00           | 5.00          | 84.0       | 0.37        |

| Well Drilling                  | Tractors/Loaders/Backh        | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
|--------------------------------|-------------------------------|--------|---------|------|------|------|------|
| Well Drilling                  | Bore/Drill Rigs               | Diesel | Average | 1.00 | 8.00 | 83.0 | 0.50 |
| Well Drilling                  | Forklifts                     | Diesel | Average | 1.00 | 5.00 | 82.0 | 0.20 |
| Well Drilling                  | Tractors/Loaders/Backh oes    | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Well Site Fencing              | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Building Construction          | Excavators                    | Diesel | Average | 1.00 | 2.00 | 82.0 | 0.20 |
| Building Construction          | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Building Construction          | Cranes                        | Diesel | Average | 1.00 | 4.00 | 367  | 0.29 |
| Building Construction          | Generator Sets                | Diesel | Average | 1.00 | 6.00 | 14.0 | 0.74 |
| Water Tank                     | Cranes                        | Diesel | Average | 1.00 | 1.00 | 367  | 0.29 |
| Water Tank                     | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 3.00 | 82.0 | 0.20 |
| Water Tank                     | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Water Tank                     | Air Compressors               | Diesel | Average | 1.00 | 6.00 | 46.0 | 0.31 |
| Piping and<br>Appurtenances    | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 2.00 | 84.0 | 0.37 |
| Piping and<br>Appurtenances    | Generator Sets                | Diesel | Average | 1.00 | 5.00 | 14.0 | 0.74 |
| Treatment System               | Cranes                        | Diesel | Average | 1.00 | 1.00 | 367  | 0.29 |
| Treatment System               | Tractors/Loaders/Backh<br>oes | Diesel | Average | 2.00 | 8.00 | 84.0 | 0.37 |
| Treatment System               | Generator Sets                | Diesel | Average | 1.00 | 1.00 | 14.0 | 0.74 |
| Pump and Motor<br>Installation | Tractors/Loaders/Backh<br>oes | Diesel | Average | 2.00 | 6.00 | 82.0 | 0.20 |
| Pump and Motor<br>Installation | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 5.00 | 84.0 | 0.37 |
| Hydropneumatic tank            | Cranes                        | Diesel | Average | 1.00 | 1.00 | 367  | 0.29 |

| Hydropneumatic tank   | Tractors/Loaders/Backh        | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 |
|-----------------------|-------------------------------|--------|---------|------|------|------|------|
| Hydropneumatic tank   | Generator Sets                | Diesel | Average | 1.00 | 3.00 | 14.0 | 0.74 |
| Site Electrical Equip | Forklifts                     | Diesel | Average | 1.00 | 1.00 | 82.0 | 0.20 |
| Site Electrical Equip | Tractors/Loaders/Backh<br>oes | Diesel | Average | 2.00 | 8.00 | 84.0 | 0.37 |
| Paving and Sidewalk   | Cement and Mortar<br>Mixers   | Diesel | Average | 4.00 | 4.00 | 10.0 | 0.56 |
| Paving and Sidewalk   | Pavers                        | Diesel | Average | 1.00 | 4.00 | 81.0 | 0.42 |
| Paving and Sidewalk   | Rollers                       | Diesel | Average | 1.00 | 4.00 | 36.0 | 0.38 |
| Paving and Sidewalk   | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 4.00 | 84.0 | 0.37 |
| Paint and coatings    | Air Compressors               | Diesel | Average | 1.00 | 5.00 | 37.0 | 0.48 |
| Paint and coatings    | Generator Sets                | Diesel | Average | 1.00 | 5.00 | 14.0 | 0.74 |
| Undg. Pipeline        | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 6.00 | 84.0 | 0.37 |
| Undg. Pipeline        | Excavators                    | Diesel | Average | 1.00 | 3.00 | 36.0 | 0.38 |
| Undg. Pipeline        | Air Compressors               | Diesel | Average | 1.00 | 3.00 | 37.0 | 0.48 |
| Undg. Electrical      | Excavators                    | Diesel | Average | 1.00 | 3.00 | 36.0 | 0.38 |
| Undg. Electrical      | Tractors/Loaders/Backh<br>oes | Diesel | Average | 1.00 | 3.00 | 84.0 | 0.37 |
| Undg. Electrical      | Generator Sets                | Diesel | Average | 1.00 | 1.00 | 14.0 | 0.74 |

## 5.3. Construction Vehicles

### 5.3.1. Unmitigated

| Phase Name | Тгір Туре | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|------------|-----------|-----------------------|----------------|---------------|
| Demolition | —         | —                     | —              | —             |
| Demolition | Worker    | 7.50                  | 11.0           | LDA,LDT1,LDT2 |
| Demolition | Vendor    | 3.00                  | 7.37           | HHDT,MHDT     |

| Demolition                | Hauling      | 0.13 | 20.0 | HHDT          |
|---------------------------|--------------|------|------|---------------|
| Demolition                | Onsite truck | —    | —    | HHDT          |
| Well Site Preparation     | —            | —    | —    | —             |
| Well Site Preparation     | Worker       | 5.00 | 11.0 | LDA,LDT1,LDT2 |
| Well Site Preparation     | Vendor       | 3.00 | 7.37 | HHDT,MHDT     |
| Well Site Preparation     | Hauling      | 0.91 | 20.0 | HHDT          |
| Well Site Preparation     | Onsite truck | —    | —    | HHDT          |
| Rough Grading and Over-ex | —            | —    | —    | —             |
| Rough Grading and Over-ex | Worker       | 7.50 | 11.0 | LDA,LDT1,LDT2 |
| Rough Grading and Over-ex | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Rough Grading and Over-ex | Hauling      | 0.00 | 20.0 | HHDT          |
| Rough Grading and Over-ex | Onsite truck | —    | —    | HHDT          |
| Building Construction     | —            | _    | —    | —             |
| Building Construction     | Worker       | 8.00 | 11.0 | LDA,LDT1,LDT2 |
| Building Construction     | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Building Construction     | Hauling      | 0.00 | 20.0 | HHDT          |
| Building Construction     | Onsite truck | —    | —    | HHDT          |
| Paving and Sidewalk       | —            | —    | —    | —             |
| Paving and Sidewalk       | Worker       | 17.5 | 11.0 | LDA,LDT1,LDT2 |
| Paving and Sidewalk       | Vendor       | —    | 7.37 | HHDT,MHDT     |
| Paving and Sidewalk       | Hauling      | 0.00 | 20.0 | HHDT          |
| Paving and Sidewalk       | Onsite truck | —    | —    | HHDT          |
| Well Drilling             | —            | —    | —    | —             |
| Well Drilling             | Worker       | 12.0 | 11.0 | LDA,LDT1,LDT2 |
| Well Drilling             | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Well Drilling             | Hauling      | 0.34 | 20.0 | HHDT          |
| Well Drilling             | Onsite truck | _    | —    | HHDT          |

| Well Site Fencing           | _            | _    | _    | -             |
|-----------------------------|--------------|------|------|---------------|
| Well Site Fencing           | Worker       | 6.00 | 11.0 | LDA,LDT1,LDT2 |
| Well Site Fencing           | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Well Site Fencing           | Hauling      | 0.00 | 20.0 | HHDT          |
| Well Site Fencing           | Onsite truck | _    | _    | HHDT          |
| Water Tank                  | _            | _    | _    | _             |
| Water Tank                  | Worker       | 6.00 | 11.0 | LDA,LDT1,LDT2 |
| Water Tank                  | Vendor       | 1.00 | 7.37 | HHDT,MHDT     |
| Water Tank                  | Hauling      | 0.00 | 20.0 | HHDT          |
| Water Tank                  | Onsite truck | _    | —    | HHDT          |
| Piping and Appurtenances    | _            | _    | _    | _             |
| Piping and Appurtenances    | Worker       | 6.00 | 11.0 | LDA,LDT1,LDT2 |
| Piping and Appurtenances    | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Piping and Appurtenances    | Hauling      | 0.00 | 20.0 | HHDT          |
| Piping and Appurtenances    | Onsite truck | _    | —    | HHDT          |
| Undg. Pipeline              | —            | _    | —    | -             |
| Undg. Pipeline              | Worker       | 7.50 | 11.0 | LDA,LDT1,LDT2 |
| Undg. Pipeline              | Vendor       | _    | 7.37 | HHDT,MHDT     |
| Undg. Pipeline              | Hauling      | 0.00 | 20.0 | HHDT          |
| Undg. Pipeline              | Onsite truck | _    | —    | HHDT          |
| Treatment System            | —            | _    | —    | _             |
| Treatment System            | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Treatment System            | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
| Treatment System            | Hauling      | 0.00 | 20.0 | HHDT          |
| Treatment System            | Onsite truck | _    | _    | HHDT          |
| Pump and Motor Installation | _            | _    | _    | _             |
| Pump and Motor Installation | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |

| Pump and Motor Installation | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
|-----------------------------|--------------|------|------|---------------|
| Pump and Motor Installation | Hauling      | 0.00 | 20.0 | HHDT          |
| Pump and Motor Installation | Onsite truck | —    |      | HHDT          |
| Hydropneumatic tank         | —            | —    |      | _             |
| Hydropneumatic tank         | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Hydropneumatic tank         | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
| Hydropneumatic tank         | Hauling      | 0.00 | 20.0 | HHDT          |
| Hydropneumatic tank         | Onsite truck | —    |      | HHDT          |
| Site Electrical Equip       | —            | —    |      | _             |
| Site Electrical Equip       | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Site Electrical Equip       | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
| Site Electrical Equip       | Hauling      | 0.00 | 20.0 | HHDT          |
| Site Electrical Equip       | Onsite truck | —    | _    | HHDT          |
| Undg. Electrical            | —            | —    | _    | _             |
| Undg. Electrical            | Worker       | 7.50 | 11.0 | LDA,LDT1,LDT2 |
| Undg. Electrical            | Vendor       | _    | 7.37 | HHDT,MHDT     |
| Undg. Electrical            | Hauling      | 0.00 | 20.0 | HHDT          |
| Undg. Electrical            | Onsite truck | _    | _    | HHDT          |
| Paint and coatings          | —            | —    |      | _             |
| Paint and coatings          | Worker       | 0.67 | 11.0 | LDA,LDT1,LDT2 |
| Paint and coatings          | Vendor       | —    | 7.37 | HHDT,MHDT     |
| Paint and coatings          | Hauling      | 0.00 | 20.0 | HHDT          |
| Paint and coatings          | Onsite truck | —    | _    | HHDT          |
| Finish Grading              | —            | —    | _    |               |
| Finish Grading              | Worker       | 5.00 | 11.0 | LDA,LDT1,LDT2 |
| Finish Grading              | Vendor       | —    | 7.37 | HHDT,MHDT     |
| Finish Grading              | Hauling      | 0.00 | 20.0 | HHDT          |

| Finish Grading | Onsite truck | — | <br>HHDT |
|----------------|--------------|---|----------|

### 5.3.2. Mitigated

| Phase Name                | Тгір Туре    | One-Way Trips per Day | Miles per Trip | Vehicle Mix   |
|---------------------------|--------------|-----------------------|----------------|---------------|
| Demolition                | —            | -                     | _              | —             |
| Demolition                | Worker       | 7.50                  | 11.0           | LDA,LDT1,LDT2 |
| Demolition                | Vendor       | 3.00                  | 7.37           | HHDT,MHDT     |
| Demolition                | Hauling      | 0.13                  | 20.0           | HHDT          |
| Demolition                | Onsite truck | —                     | _              | HHDT          |
| Well Site Preparation     | —            | —                     | _              | —             |
| Well Site Preparation     | Worker       | 5.00                  | 11.0           | LDA,LDT1,LDT2 |
| Well Site Preparation     | Vendor       | 3.00                  | 7.37           | HHDT,MHDT     |
| Well Site Preparation     | Hauling      | 0.91                  | 20.0           | HHDT          |
| Well Site Preparation     | Onsite truck | —                     | _              | HHDT          |
| Rough Grading and Over-ex | _            | —                     | _              | —             |
| Rough Grading and Over-ex | Worker       | 7.50                  | 11.0           | LDA,LDT1,LDT2 |
| Rough Grading and Over-ex | Vendor       | 2.00                  | 7.37           | HHDT,MHDT     |
| Rough Grading and Over-ex | Hauling      | 0.00                  | 20.0           | HHDT          |
| Rough Grading and Over-ex | Onsite truck | —                     | _              | HHDT          |
| Building Construction     | —            | —                     | _              | —             |
| Building Construction     | Worker       | 8.00                  | 11.0           | LDA,LDT1,LDT2 |
| Building Construction     | Vendor       | 2.00                  | 7.37           | HHDT,MHDT     |
| Building Construction     | Hauling      | 0.00                  | 20.0           | HHDT          |
| Building Construction     | Onsite truck | —                     | _              | HHDT          |
| Paving and Sidewalk       | _            | —                     | _              | —             |
| Paving and Sidewalk       | Worker       | 17.5                  | 11.0           | LDA,LDT1,LDT2 |
| Paving and Sidewalk       | Vendor       | —                     | 7.37           | HHDT,MHDT     |

| Paving and Sidewalk      | Hauling      | 0.00 | 20.0 | HHDT          |
|--------------------------|--------------|------|------|---------------|
| Paving and Sidewalk      | Onsite truck | —    | _    | HHDT          |
| Well Drilling            | _            | —    | _    | —             |
| Well Drilling            | Worker       | 12.0 | 11.0 | LDA,LDT1,LDT2 |
| Well Drilling            | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Well Drilling            | Hauling      | 0.34 | 20.0 | HHDT          |
| Well Drilling            | Onsite truck | —    | _    | HHDT          |
| Well Site Fencing        | _            | _    | _    | —             |
| Well Site Fencing        | Worker       | 6.00 | 11.0 | LDA,LDT1,LDT2 |
| Well Site Fencing        | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Well Site Fencing        | Hauling      | 0.00 | 20.0 | HHDT          |
| Well Site Fencing        | Onsite truck | —    | —    | HHDT          |
| Water Tank               | —            | —    | —    | —             |
| Water Tank               | Worker       | 6.00 | 11.0 | LDA,LDT1,LDT2 |
| Water Tank               | Vendor       | 1.00 | 7.37 | HHDT,MHDT     |
| Water Tank               | Hauling      | 0.00 | 20.0 | HHDT          |
| Water Tank               | Onsite truck | —    | —    | HHDT          |
| Piping and Appurtenances | _            | _    | _    | —             |
| Piping and Appurtenances | Worker       | 6.00 | 11.0 | LDA,LDT1,LDT2 |
| Piping and Appurtenances | Vendor       | 2.00 | 7.37 | HHDT,MHDT     |
| Piping and Appurtenances | Hauling      | 0.00 | 20.0 | HHDT          |
| Piping and Appurtenances | Onsite truck | —    | —    | HHDT          |
| Undg. Pipeline           | _            | —    | _    | —             |
| Undg. Pipeline           | Worker       | 7.50 | 11.0 | LDA,LDT1,LDT2 |
| Undg. Pipeline           | Vendor       | _    | 7.37 | HHDT,MHDT     |
| Undg. Pipeline           | Hauling      | 0.00 | 20.0 | HHDT          |
| Undg. Pipeline           | Onsite truck | _    | _    | HHDT          |

| Treatment System            | —            | —    | —    | —             |
|-----------------------------|--------------|------|------|---------------|
| Treatment System            | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Treatment System            | Vendor       | 0.14 | 7.37 | HHDT, MHDT    |
| Treatment System            | Hauling      | 0.00 | 20.0 | HHDT          |
| Treatment System            | Onsite truck | —    | —    | HHDT          |
| Pump and Motor Installation | —            | —    | —    | _             |
| Pump and Motor Installation | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Pump and Motor Installation | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
| Pump and Motor Installation | Hauling      | 0.00 | 20.0 | HHDT          |
| Pump and Motor Installation | Onsite truck | —    | —    | HHDT          |
| Hydropneumatic tank         | _            | _    | _    | _             |
| Hydropneumatic tank         | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Hydropneumatic tank         | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
| Hydropneumatic tank         | Hauling      | 0.00 | 20.0 | HHDT          |
| Hydropneumatic tank         | Onsite truck | —    | —    | HHDT          |
| Site Electrical Equip       | _            | —    | —    | _             |
| Site Electrical Equip       | Worker       | 0.37 | 11.0 | LDA,LDT1,LDT2 |
| Site Electrical Equip       | Vendor       | 0.14 | 7.37 | HHDT,MHDT     |
| Site Electrical Equip       | Hauling      | 0.00 | 20.0 | HHDT          |
| Site Electrical Equip       | Onsite truck | —    | —    | HHDT          |
| Undg. Electrical            | _            | —    | —    | _             |
| Undg. Electrical            | Worker       | 7.50 | 11.0 | LDA,LDT1,LDT2 |
| Undg. Electrical            | Vendor       | _    | 7.37 | HHDT,MHDT     |
| Undg. Electrical            | Hauling      | 0.00 | 20.0 | HHDT          |
| Undg. Electrical            | Onsite truck | —    | —    | HHDT          |
| Paint and coatings          | _            | _    | _    | _             |
| Paint and coatings          | Worker       | 0.67 | 11.0 | LDA,LDT1,LDT2 |

| Paint and coatings | Vendor       | _    | 7.37 | HHDT,MHDT     |
|--------------------|--------------|------|------|---------------|
| Paint and coatings | Hauling      | 0.00 | 20.0 | HHDT          |
| Paint and coatings | Onsite truck | —    | —    | HHDT          |
| Finish Grading     | —            | _    | _    | _             |
| Finish Grading     | Worker       | 5.00 | 11.0 | LDA,LDT1,LDT2 |
| Finish Grading     | Vendor       | —    | 7.37 | HHDT,MHDT     |
| Finish Grading     | Hauling      | 0.00 | 20.0 | HHDT          |
| Finish Grading     | Onsite truck |      |      | HHDT          |

### 5.4. Vehicles

### 5.4.1. Construction Vehicle Control Strategies

| Control Strategies Applied                      | PM10 Reduction | PM2.5 Reduction |
|-------------------------------------------------|----------------|-----------------|
| Water unpaved roads twice daily                 | 55%            | 55%             |
| Limit vehicle speeds on unpaved roads to 25 mph | 44%            | 44%             |
| Sweep paved roads once per month                | 9%             | 9%              |

## 5.5. Architectural Coatings

| Phase Name         | Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) |       | Non-Residential Exterior Area<br>Coated (sq ft) | Parking Area Coated (sq ft) |
|--------------------|------------------------------------------|------------------------------------------|-------|-------------------------------------------------|-----------------------------|
| Paint and coatings | 0.00                                     | 0.00                                     | 1,326 | 442                                             | _                           |

### 5.6. Dust Mitigation

#### 5.6.1. Construction Earthmoving Activities

| Phase Name | Material Imported (Cubic Yards) | Material Exported (Cubic Yards) | Material Demolished (Ton of<br>Debris) | Acres Paved (acres) |
|------------|---------------------------------|---------------------------------|----------------------------------------|---------------------|
|            |                                 |                                 |                                        |                     |

| Demolition                | 0.00 | 0.00 | 0.00 | 1.00 |         |
|---------------------------|------|------|------|------|---------|
| Well Site Preparation     | 80.0 | 80.0 | 1.00 | 0.00 | _       |
| Rough Grading and Over-ex | 0.00 | 0.00 | 3.00 | 0.00 | _       |
| Finish Grading            | —    | —    | 0.00 | 0.00 | —       |
| Well Drilling             | 0.00 | 170  | 0.00 | 0.00 | —       |
| Paving and Sidewalk       | 0.00 | 0.00 | 0.00 | 0.00 | < 0.005 |

#### 5.6.2. Construction Earthmoving Control Strategies

| Control Strategies Applied | Frequency (per day) | PM10 Reduction | PM2.5 Reduction |
|----------------------------|---------------------|----------------|-----------------|
| Water Exposed Area         | 3                   | 74%            | 74%             |
| Water Demolished Area      | 2                   | 36%            | 36%             |

### 5.7. Construction Paving

| Land Use                | Area Paved (acres) | % Asphalt |
|-------------------------|--------------------|-----------|
| User Defined Industrial | < 0.005            | 80%       |

### 5.8. Construction Electricity Consumption and Emissions Factors

#### kWh per Year and Emission Factor (lb/MWh)

| Year | kWh per Year | CO2 | CH4  | N2O     |
|------|--------------|-----|------|---------|
| 2023 | 0.00         | 204 | 0.03 | < 0.005 |
| 2024 | 0.00         | 204 | 0.03 | < 0.005 |
| 2025 | 0.00         | 204 | 0.03 | < 0.005 |

## 5.9. Operational Mobile Sources

#### 5.9.1. Unmitigated

| Land Use Type              | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|----------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| User Defined<br>Industrial | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00     |

#### 5.9.2. Mitigated

| Land Use Type              | Trips/Weekday | Trips/Saturday | Trips/Sunday | Trips/Year | VMT/Weekday | VMT/Saturday | VMT/Sunday | VMT/Year |
|----------------------------|---------------|----------------|--------------|------------|-------------|--------------|------------|----------|
| User Defined<br>Industrial | 0.00          | 0.00           | 0.00         | 0.00       | 0.00        | 0.00         | 0.00       | 0.00     |

## 5.10. Operational Area Sources

#### 5.10.1. Hearths

#### 5.10.1.1. Unmitigated

#### 5.10.1.2. Mitigated

#### 5.10.2. Architectural Coatings

| Residential Interior Area Coated (sq ft) | Residential Exterior Area Coated (sq ft) | Non-Residential Interior Area Coated<br>(sq ft) | Non-Residential Exterior Area Coated (sq ft) | Parking Area Coated (sq ft) |
|------------------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------|
| 0                                        | 0.00                                     | 1,326                                           | 442                                          | _                           |

#### 5.10.3. Landscape Equipment

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 180   |

#### 5.10.4. Landscape Equipment - Mitigated

| Season      | Unit   | Value |
|-------------|--------|-------|
| Snow Days   | day/yr | 0.00  |
| Summer Days | day/yr | 180   |

### 5.11. Operational Energy Consumption

#### 5.11.1. Unmitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use                | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|-------------------------|----------------------|-----|--------|--------|-----------------------|
| User Defined Industrial | 600,000              | 204 | 0.0330 | 0.0040 | 0.00                  |

#### 5.11.2. Mitigated

#### Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

| Land Use                | Electricity (kWh/yr) | CO2 | CH4    | N2O    | Natural Gas (kBTU/yr) |
|-------------------------|----------------------|-----|--------|--------|-----------------------|
| User Defined Industrial | 600,000              | 204 | 0.0330 | 0.0040 | 0.00                  |

### 5.12. Operational Water and Wastewater Consumption

#### 5.12.1. Unmitigated

| Land Use                | Indoor Water (gal/year) | Outdoor Water (gal/year) |
|-------------------------|-------------------------|--------------------------|
| User Defined Industrial | 0.00                    | 5,799                    |

#### 5.12.2. Mitigated

| Land Use                | Indoor Water (gal/year) | Outdoor Water (gal/year) |
|-------------------------|-------------------------|--------------------------|
| User Defined Industrial | 0.00                    | 5,799                    |

### 5.13. Operational Waste Generation

#### 5.13.1. Unmitigated

| Land Use                | Waste (ton/year) | Cogeneration (kWh/year) |
|-------------------------|------------------|-------------------------|
| User Defined Industrial | 0.00             |                         |

#### 5.13.2. Mitigated

| Land Use                | Waste (ton/year) | Cogeneration (kWh/year) |
|-------------------------|------------------|-------------------------|
| User Defined Industrial | 0.00             | _                       |

## 5.14. Operational Refrigeration and Air Conditioning Equipment

#### 5.14.1. Unmitigated

| Land Use Type    | Equipment Type | Refrigerant | GWP | Quantity (kg) | Operations Leak Rate | Service Leak Rate | Times Serviced |
|------------------|----------------|-------------|-----|---------------|----------------------|-------------------|----------------|
|                  |                |             |     |               |                      |                   |                |
| 5 14 2 Mitigated |                |             |     |               |                      |                   |                |

#### 5.14.2. Mitigated

| Land Use Type         Equipment Type         Refrigerant         GWP         Quantity (kg)         Operations Leak Rate         Service Leak Rate | Times Serviced |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|

### 5.15. Operational Off-Road Equipment

#### 5.15.1. Unmitigated

| Equipment Type    | Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |
|-------------------|-----------|-------------|----------------|---------------|------------|-------------|
| 5 15 2 Mitigated  |           |             |                |               |            |             |
| 5.15.2. Mitigated |           |             |                |               |            |             |

| Equipment Ty | be Fuel Type | Engine Tier | Number per Day | Hours Per Day | Horsepower | Load Factor |  |
|--------------|--------------|-------------|----------------|---------------|------------|-------------|--|
|--------------|--------------|-------------|----------------|---------------|------------|-------------|--|

### 5.16. Stationary Sources

#### 5.16.1. Emergency Generators and Fire Pumps

| Equipment Type          | Fuel Type | Number per Day | Hours per Day | Hours per Year | Horsepower                   | Load Factor                  |
|-------------------------|-----------|----------------|---------------|----------------|------------------------------|------------------------------|
| 5.16.2. Process Boilers |           |                |               |                |                              |                              |
| Equipment Type          | Fuel Type | Number         | Boiler Rati   | g (MMBtu/hr)   | Daily Heat Input (MMBtu/day) | Annual Heat Input (MMBtu/yr) |

### 5.17. User Defined

| Equipment Type | Fuel Type |
|----------------|-----------|
|                |           |

### 5.18. Vegetation

### 5.18.1. Land Use Change

#### 5.18.1.1. Unmitigated

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
| Urban                    | Entisols             | 0.50          | 0.50        |

#### 5.18.1.2. Mitigated

| Vegetation Land Use Type | Vegetation Soil Type | Initial Acres | Final Acres |
|--------------------------|----------------------|---------------|-------------|
| Urban                    | Entisols             | 0.50          | 0.50        |

5.18.1. Biomass Cover Type

#### 5.18.1.1. Unmitigated

| Biomass Cover Type | Initial Acres | Final Acres |
|--------------------|---------------|-------------|
| Urban              | 0.50          | 0.50        |

#### 5.18.1.2. Mitigated

| Biomass Cover Type | Initial Acres | Final Acres |
|--------------------|---------------|-------------|
| Urban              | 0.50          | 0.50        |

#### 5.18.2. Sequestration

#### 5.18.2.1. Unmitigated

| Тгее Туре         | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |
|-------------------|--------|------------------------------|------------------------------|
| tupelo            | 2.00   | 19,366                       | 6.00                         |
| Magnolia Southern | 4.00   | 19,555                       | 53.8                         |
| Carob             | 5.00   | 17,710                       | 5.80                         |
| Pine Fern         | 5.00   | 21,059                       | 53.5                         |
| Pine Fern         | -5.00  | 0.00                         | 0.00                         |
| Carob             | -5.00  | 0.00                         | 0.00                         |

#### 5.18.2.2. Mitigated

| Тгее Туре | Number | Electricity Saved (kWh/year) | Natural Gas Saved (btu/year) |
|-----------|--------|------------------------------|------------------------------|
|-----------|--------|------------------------------|------------------------------|

# 6. Climate Risk Detailed Report

### 6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

| Climate Hazard               | Result for Project Location | Unit                                       |
|------------------------------|-----------------------------|--------------------------------------------|
| Temperature and Extreme Heat | 20.1                        | annual days of extreme heat                |
| Extreme Precipitation        | 0.00                        | annual days with precipitation above 20 mm |
| Sea Level Rise               | 0.00                        | meters of inundation depth                 |
| Wildfire                     | 0.00                        | annual hectares burned                     |

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about <sup>3</sup>/<sub>4</sub> an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

### 6.2. Initial Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 2              | 2                 | 0                       | N/A                 |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | 5              | 2                 | 0                       | N/A                 |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 5              | 1                 | 4                       | 2                   |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures. 6.3. Adjusted Climate Risk Scores

| Climate Hazard               | Exposure Score | Sensitivity Score | Adaptive Capacity Score | Vulnerability Score |
|------------------------------|----------------|-------------------|-------------------------|---------------------|
| Temperature and Extreme Heat | 2              | 1                 | 2                       | 2                   |
| Extreme Precipitation        | N/A            | N/A               | N/A                     | N/A                 |
| Sea Level Rise               | N/A            | N/A               | N/A                     | N/A                 |
| Wildfire                     | N/A            | N/A               | N/A                     | N/A                 |
| Flooding                     | N/A            | N/A               | N/A                     | N/A                 |
| Drought                      | 5              | 1                 | 2                       | 3                   |
| Snowpack Reduction           | N/A            | N/A               | N/A                     | N/A                 |
| Air Quality Degradation      | 5              | 1                 | 6                       | N/A                 |

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

### 6.4. Climate Risk Reduction Measures

#### 6.4.1. Temperature and Extreme Heat

| User Selected Measures                                 | Co-Benefits Achieved                          | Exposure Reduction | Sensitivity Reduction | Adaptive Capacity Increase |
|--------------------------------------------------------|-----------------------------------------------|--------------------|-----------------------|----------------------------|
| D-3: Install Drought Resistant<br>Landscaping          | Water Conservation                            |                    | 1.00                  | 1.00                       |
| EH-5: Upgrade to Efficient<br>Equipment/Infrastructure | Energy and Fuel Savings                       |                    |                       | 2.00                       |
| MH-23: Landscape with Climate<br>Considerations        | Improved Ecosystem Health, Water Conservation |                    | 1.00                  |                            |

| MH-39: Implement Pervious and Climate-Smart Surfaces | Energy and Fuel Savings, Improved Air —<br>Quality, Improved Ecosystem Health,<br>Improved Public Health, Water<br>Conservation |  | 1.00 |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|------|--|
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|------|--|

#### 6.4.2. Drought

| User Selected Measures                               | Co-Benefits Achieved                                                                                                          | Exposure Reduction | Sensitivity Reduction | Adaptive Capacity Increase |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|----------------------------|
| D-3: Install Drought Resistant<br>Landscaping        | Water Conservation                                                                                                            |                    | 1.00                  | 1.00                       |
| D-8: Develop Groundwater<br>Sustainability Plan      | Improved Ecosystem Health                                                                                                     |                    |                       | 2.00                       |
| MH-23: Landscape with Climate<br>Considerations      | Improved Ecosystem Health, Water Conservation                                                                                 |                    | 1.00                  | _                          |
| MH-39: Implement Pervious and Climate-Smart Surfaces | Energy and Fuel Savings, Improved Air<br>Quality, Improved Ecosystem Health,<br>Improved Public Health, Water<br>Conservation |                    | 1.00                  |                            |

#### 6.4.3. Air Quality Degradation

| User Selected Measures                                 | Co-Benefits Achieved    | Exposure Reduction | Sensitivity Reduction | Adaptive Capacity Increase |
|--------------------------------------------------------|-------------------------|--------------------|-----------------------|----------------------------|
| EH-5: Upgrade to Efficient<br>Equipment/Infrastructure | Energy and Fuel Savings |                    |                       | 2.00                       |

# 7. Health and Equity Details

### 7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

| Indicator           | Result for Project Census Tract |
|---------------------|---------------------------------|
| Exposure Indicators | —                               |
| AQ-Ozone            | 88.7                            |

| AQ-PM                           | 98.9 |
|---------------------------------|------|
| AQ-DPM                          | 24.0 |
| Drinking Water                  | 77.8 |
| Lead Risk Housing               | 1.24 |
| Pesticides                      | 33.8 |
| Toxic Releases                  | 38.3 |
| Traffic                         | 16.9 |
| Effect Indicators               | _    |
| CleanUp Sites                   | 0.00 |
| Groundwater                     | 0.00 |
| Haz Waste Facilities/Generators | 50.1 |
| Impaired Water Bodies           | 0.00 |
| Solid Waste                     | 0.00 |
| Sensitive Population            | _    |
| Asthma                          | 21.4 |
| Cardio-vascular                 | 53.0 |
| Low Birth Weights               | 4.36 |
| Socioeconomic Factor Indicators | _    |
| Education                       | 2.30 |
| Housing                         | 0.79 |
| Linguistic                      | 0.51 |
| Poverty                         | 13.0 |
| Unemployment                    | 66.6 |

### 7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

| Indicator |  | Result for Project Census Tract |
|-----------|--|---------------------------------|
|           |  |                                 |

| Economic                                     | _           |
|----------------------------------------------|-------------|
| Above Poverty                                | 85.55113563 |
| Employed                                     | 41.67842936 |
| Median HI                                    | 81.72719107 |
| Education                                    | _           |
| Bachelor's or higher                         | 54.58745028 |
| High school enrollment                       | 100         |
| Preschool enrollment                         | 20.53124599 |
| Transportation                               | —           |
| Auto Access                                  | 91.71050943 |
| Active commuting                             | 1.039394328 |
| Social                                       | —           |
| 2-parent households                          | 90.3118183  |
| Voting                                       | 79.78955473 |
| Neighborhood                                 | —           |
| Alcohol availability                         | 66.072116   |
| Park access                                  | 40.7160272  |
| Retail density                               | 17.91351213 |
| Supermarket access                           | 71.5642243  |
| Tree canopy                                  | 8.199666367 |
| Housing                                      | _           |
| Homeownership                                | 82.25330425 |
| Housing habitability                         | 98.35750032 |
| Low-inc homeowner severe housing cost burden | 96.67650456 |
| Low-inc renter severe housing cost burden    | 97.95970743 |
| Uncrowded housing                            | 58.11625818 |
| Health Outcomes                              | —           |

| Insured adults                        | 79.55857821 |
|---------------------------------------|-------------|
| Arthritis                             | 76.8        |
| Asthma ER Admissions                  | 74.2        |
| High Blood Pressure                   | 76.3        |
| Cancer (excluding skin)               | 42.8        |
| Asthma                                | 61.7        |
| Coronary Heart Disease                | 87.2        |
| Chronic Obstructive Pulmonary Disease | 79.3        |
| Diagnosed Diabetes                    | 91.2        |
| Life Expectancy at Birth              | 36.8        |
| Cognitively Disabled                  | 76.7        |
| Physically Disabled                   | 80.2        |
| Heart Attack ER Admissions            | 33.1        |
| Mental Health Not Good                | 67.2        |
| Chronic Kidney Disease                | 85.5        |
| Obesity                               | 49.6        |
| Pedestrian Injuries                   | 19.6        |
| Physical Health Not Good              | 84.3        |
| Stroke                                | 91.3        |
| Health Risk Behaviors                 |             |
| Binge Drinking                        | 2.4         |
| Current Smoker                        | 56.8        |
| No Leisure Time for Physical Activity | 77.8        |
| Climate Change Exposures              |             |
| Wildfire Risk                         | 0.0         |
| SLR Inundation Area                   | 0.0         |
| Children                              | 14.8        |

| Elderly                          | 88.9 |
|----------------------------------|------|
| English Speaking                 | 75.6 |
| Foreign-born                     | 16.1 |
| Outdoor Workers                  | 46.0 |
| Climate Change Adaptive Capacity | —    |
| Impervious Surface Cover         | 47.5 |
| Traffic Density                  | 0.0  |
| Traffic Access                   | 0.0  |
| Other Indices                    | —    |
| Hardship                         | 28.2 |
| Other Decision Support           | —    |
| 2016 Voting                      | 65.6 |

# 7.3. Overall Health & Equity Scores

| Metric                                                                              | Result for Project Census Tract |
|-------------------------------------------------------------------------------------|---------------------------------|
| CalEnviroScreen 4.0 Score for Project Location (a)                                  | 12.0                            |
| Healthy Places Index Score for Project Location (b)                                 | 68.0                            |
| Project Located in a Designated Disadvantaged Community (Senate Bill 535)           | No                              |
| Project Located in a Low-Income Community (Assembly Bill 1550)                      | No                              |
| Project Located in a Community Air Protection Program Community (Assembly Bill 617) | No                              |

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

### 7.4. Health & Equity Measures

| Measure Title                                              | Co-Benefits Achieved |
|------------------------------------------------------------|----------------------|
| CCD-1: Consult Pre-existing Community Knowledge/Priorities | Social Equity        |

# 7.5. Evaluation Scorecard

This table summarizes the points earned for each health and equity measure category, and the total possible points for each category. If N/A is selected for any measure(s), the total possible points in that category are reduced accordingly. The points for each category are then weighted on a 15-point scale to determine the score per category and a total weighted score.

| Category                         | Number of Applicable Measures | Total Points Earned by Applicable<br>Measures | Max Possible Points | Weighted Score |
|----------------------------------|-------------------------------|-----------------------------------------------|---------------------|----------------|
| Community-Centered Development   | 5.00                          | 3.00                                          | 25.0                | 1.71           |
| Inclusive Engagement             | 6.00                          | 0.00                                          | 30.0                | 0.00           |
| Accountability                   | 5.00                          | 0.00                                          | 25.0                | 0.00           |
| Construction Equity              | 6.00                          | 0.00                                          | 30.0                | 0.00           |
| Public Health and Air Quality    | 4.00                          | 0.00                                          | 20.0                | 0.00           |
| Inclusive Economics & Prosperity | 4.00                          | 0.00                                          | 20.0                | 0.00           |
| Inclusive Communities            | 4.00                          | 0.00                                          | 20.0                | 0.00           |
| Total                            | 34.0                          | 3.00                                          | 170                 | 1.71           |

Based on the weighted score of 2 out of a total 170 possible points, your project qualifies for the Acorn equity award level. Organization(s) consulted by the user to complete the Health & Equity Scorecard: DJA



7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen

Justification

| Land Use                                  | Water well and treatment site. Sitting on 0.50 acres. Also, we have a 20' wide access and pipeline easement approximately 625' long for a total of 13,000-sf. We will have a 4' wide trench with a 12" PVC water pipe buried 3' deep. This easement is across the park and sod. It will return to sod after the pipe is installed. |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operations: Energy Use                    | Estimated well site operation energy use based on about 800 AF/year.                                                                                                                                                                                                                                                               |
| Construction: Construction Phases         | Typical water well and treatment site construction with a pipeline from the well site to the distribution system on the west side of Verdugo Ln.                                                                                                                                                                                   |
| Construction: Paving                      | The pipeline and access easement will be returned to sod after pipeline is installed.                                                                                                                                                                                                                                              |
| Operations: Refrigerants                  | The metal building will have two 7.5-ton air conditioning units.                                                                                                                                                                                                                                                                   |
| Construction: Off-Road Equipment          | Based on a completed well site with similar equipment.                                                                                                                                                                                                                                                                             |
| Construction: Dust From Material Movement | Added well drilling material has no grading acreage. The underground pipeline will not require export because the fill will be compacted.                                                                                                                                                                                          |
| Construction: Trips and VMT               | Updated per known number of workers and vendors on site each day.                                                                                                                                                                                                                                                                  |
| Operations: Vehicle Data                  | Estimated operation of one site visit per day while in route to and from other sites.                                                                                                                                                                                                                                              |

VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

EXHIBIT D "SPECIES LIST – BIOLOGICAL CLEARANCE SURVEY"



30 September 2022

Mr. Curtis Skaggs, PE Dee Jasper & Associates, Inc. 2730 Unicorn Road, Building A Bakersfield, California 93308

Subj: Biological Clearance Survey, APN 526-010-14, Bakersfield, California.

#### Mr. Skaggs:

Pruett Biological Resource Consulting, Inc. (PruettBio) has conducted a biological clearance survey for proposed construction of a municipal water well for the Vaughn Water Company, APN 526-010-14, Bakersfield, California. The purpose of this report is to document biological resources identified during a reconnaissance-level field study of the project site and include potential biological resources identified during a literature review of the site and vicinity, identify potential impacts to biological resources resulting from the project, and to recommend avoidance and minimization measures for implementation prior to and during project activities. During the field study, existing habitat conditions, direct observations and/or species sign was recorded to assess the potential for occurrence of special-status species.

Evaluation of potential impacts to listed plant and animal species are required for the issuance of a Conditional Use Permit. This report includes an evaluation of the potential for those special-status biological resources not observed during the field study, with the potential to occur on the property based on the habitat conditions observed. The report is intended to assist in the in the evaluation for the issuance of a Conditional Use Permit (CUP) for the construction of a municipal water treatment facility proposed by the Vaughn Water District.

California Environmental Quality Act (CEQA) Appendix G thresholds have been used to evaluate potential impacts to the biological resources from the proposed project development. The project may be subject to the Metropolitan Bakersfield Habitat Conservation Plan (MBHCP). Impacts to covered plant and animal species, other than bluntnosed leopard lizard or bird species afforded protection under the Migratory Bird Treaty Act (MBTA) of 1918 (16 U.S.C. 703-711), would be fully-mitigated by participation in the MBHCP. The field study was conducted in accordance with the Federal Endangered Species Act (FESA) section 10(a)(1)(B) permit and California Endangered Species Act (CESA) incidental take permit (ITP) issued by the California Department of Fish and Wildlife, pursuant to Fish and Game Code section 2081(b)(ITP No. 2081-2013-058-04), for the MBHCP. Fieldwork under the permit guidelines would adhere to federal and state protocols satisfying CEQA thresholds. This report would serve to document compliance with ITP **General Provision 7. Take Minimization Measures**, <u>7.1. Biological Clearance Survey</u>.

The field study included full coverage transect surveys for the detection of listed or otherwise special-status species which may occur and are not afforded standing under FESA or CESA. These special-status species include burrowing owl (*Athene cunicularia*, BUOW), afforded protection under the MBTA. The MBTA makes it unlawful to take, possess, buy, sell, purchase, or barter, any migratory bird listed in 50 C.F.R. Part 10, including feathers or other parts, nests, eggs, or products, except as allowed by implementing regulations (50 C.F.R. 21). Sections 3503, 3503.5, and 3800 of the California Department of Fish and Game Code prohibit the take, possession, or destruction of birds, their nests or eggs. Implementation of the take provisions requires that project-related disturbance at active nesting territories be reduced or eliminated during critical phases of the nesting cycle (March 1 - August 15, annually). BOUW populations in the San Joaquin Valley and specific urban populations in metropolitan Bakersfield occur in close association with California ground squirrels (*Otospermophilus beecheyi*).



A field study was conducted on the project on 30 September 2022 by Steven P. Pruett, a CDFW-approved Qualified Biologist for all ITP Covered Species. The project was evaluated on full coverage transects at intervals no greater than 100-feet (30-meters). A 50-foot (15-meter) buffer was included where accessible either visually or by pedestrian transects. The project site is a portion of a fully developed park in northwest Bakersfield surrounded by residential development and associated services including an elementary school.

Based on the location and habitat of the project, the focus of the field study was the detection of occupation by SJKF and BUOW or protected migratory birds. No SJKF or BUOW were observed during the field study. No SJKF potential, known, or natal dens were observed. No SJKF scat, track, or other evidence suggesting SJKF presence was observed. No BUOW was observed. No BUOW burrows or evidence of BUOW presence was observed. No stick nests or passerine nests were observed during the survey.

CEQA Appendix G thresholds have been used to evaluate potential impacts to the biological resources from the proposed project. The project would create a significant impact to biological resources, based on the specifications in Appendix G of the CEQA Guidelines, if the following were to occur:

- 1. Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service;
- Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service;
- 3. Have a substantial adverse effect on federally protected wetlands as defined by section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means;
- 4. Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;
- 5. Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance;
- 6. Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

The following analysis discusses potential impacts associated with the development of the project and provides recommendations where appropriate to further reduce potential impacts.

1. Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, by the CDFW, or the USFWS?

Direct and indirect impacts, in the form of "incidental take" of a threatened, endangered, or otherwise protected species, are not expected as a result of the development of the proposed project.

2. Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations, or by the CDFW or the USFWS?

No riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or United States Fish and Wildlife Service exists on the project site. No adverse effect will occur as a result of the development of the proposed project and no mitigation measures are recommended.



# Would the project have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means? ы.

No features, identified in wetland categories, appear on the USFWS National Wetlands Inventory mapping (USFWS Clean Water Act were identified during the field study conducted for the preparation of this report. No substantial adverse effect will occur as a result of the development of the project. No mitigation measures are recommended 2021) on the proposed, modified project site. No federally protected wetlands as defined by Section 404 of the

# Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites? 4

No migratory wildlife corridors were identified during the literature search or field study. The project will not interfere substantially with the movement of any native fish of wildlife species or with established native resident or migratory wildlife corridors or impede the use of native wildlife nursery sites. The following recommendations are provided for the general protection of bird species that may occur on the project site or vicinity in compliance with the MBTA:

biologist. In general, minimum avoidance zones for active nests should be implemented as follows: 1) ground or low-If ground-disturbing activities are planned during the nesting season for migratory birds that may nest on or near the site (generally February 1 through August 31), nesting bird surveys are recommended prior to the commencement shrub nesting non-raptors – 300 feet (91 meters); 2) burrowing owl – as appropriate based on nest location, existing surrounding activity, and evaluation of owl behavior. Coordination with CDFW may be warranted. 3) Sensitive should occur within an appropriate avoidance area for that species until young have fledged, unless otherwise approved and monitored by a qualified onsite biologist. Appropriate avoidance should be determined by a qualified of ground disturbance for project activities. If nesting birds are present, no new construction or ground disturbance raptors (e.g., prairie falcon, golden eagle) – 0.5 miles (0.8 kilometers); 3) other raptors – 500 feet (152 meters)

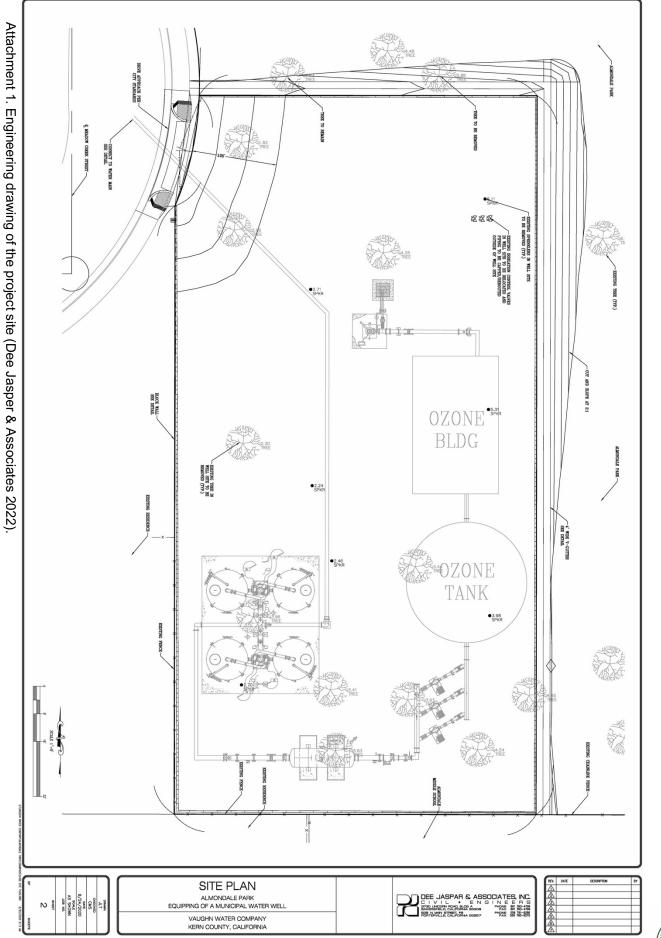
# Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance? ы. С

There are no biological resources on the site which are protected by local policies. Impacts from conflicts with local policies will not occur. No additional mitigation measures are recommended.

# Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan. <u>ن</u>

The project does not conflict with any Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan. No additional mitigation measures are recommended.

No significant impacts to listed or otherwise special status species are expected to occur as a result of the proposed project.


Please do not hesitate to contact me if you have any questions or require additional information.

Respectfully,

Rew P. Prus

Steven P. Pruett, Principal Biologist

Attachment





MBHCP Biological Clearance Survey APN 526-010-14 September 2022





Attachment 2. Photograph taken from about the NW corner facing SE (30Sep22).



Attachment 3. Photograph taken from about the SE corner facing N (30Sep22).





Attachment 4. Photograph taken from about the SE corner facing NW (30Sep22).



Attachment 5. Photograph taken from about the SE corner facing W (30Sep22).



#### Attachment 6: MBHCP Urban Development ITP Report Distribution



Metropolitan Bakersfield Habitat Conservation Plan

#### MBHCP GROUND-DISTURBANCE COMPLIANCE FORM

| PROJECT or MAP NO                  | GRADING PERMIT NO. (if applicable) |
|------------------------------------|------------------------------------|
|                                    | PHONE NO.                          |
| SITE ADDRESS (or general location) |                                    |
| PROJECT TYPE/DESCRIPTION           |                                    |
|                                    |                                    |

#### THE FOLLOWING IS REQUIRED FOR ALL GROUND-DISTURBANCE ACTIVITIES:

- 1. A Biological Clearance Survey is required on all projects <u>no more than 30 days prior</u> to grading or other ground-disturbance activities by a Qualified Biologist (see Exhibit A). The Survey Area includes: 1) all areas to be permanently (e.g., buildings, hardscapes, landscape, etc.) and temporarily (e.g., staging areas, utility undergrounding footprints, etc.) disturbance areas as 2) a 50-foot buffer of both the permanent and temporary disturbance areas. If ground disturbance ceases for over 30 days or has occurred for more than one year and the month is January, then an additional Biological Clearance Survey is required.
- The Qualified Biologist shall map the Survey Area onto the grading plan or other ground-disturbance plan, and include the map in the Biological Clearance Survey Report. The Survey Area Map shall include: 1) total gross acres of disturbance, 2) bearings and distances, 3) extent of permanent and temporary ground disturbance, and 4) extent of Survey Area.
- If survey results find Covered Species (see Exhibit B) within the Survey Area, a written Notice of Grading Start is required at least five business days prior to any ground-disturbance activities (excludes weekends and holidays) (see Exhibit C). The Notice of Grading Start shall only be submitted AFTER all required minimization measures are implemented (see Exhibit D).
- 4. The Qualified Biologist shall email the Biological Clearance Survey Report to the proper agencies. The Survey Report shall include: 1) Survey Area Map and 2) signed Biological Clearance Statement. Please save or print your email as proof of notification.

#### Ctrl + Click to: EMAIL TO THESE AGENCIES

EMAIL SUBJECT LINE: "MBHCP CLEARANCE SURVEY - GRADING PERMIT NO. \_\_\_\_\_\_" OR "MBHCP CLEARANCE SURVEY - PROJECT OR MAP NO. \_\_\_\_\_"

| City of Bakersfield                           | MBHCP Staff<br>Phone (661) 326-3733<br>Fax (661) 852-2136                                                          | MBHCPsurvey@bakersfieldcity.us                                                                           |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| U.S. Fish and Wildlife Service                | Patricia Cole and Justin Sloan<br>Phone (916) 414-6600<br>Fax (916) 414-6712                                       | patricia_cole@fws.gov<br>justin_sloan@fws.gov                                                            |
| California Department of<br>Fish and Wildlife | Jennifer Giannetta, John Battistoni,<br>and Janice Yoshioka<br>Phone (559) 243-4014 ext. 247<br>Fax (559) 243-4020 | Jennifer.Giannetta@wildlife.ca.gov<br>John.Battistoni@wildlife.ca.gov<br>Janice.Yoshioka@wildlife.ca.gov |

S/MBHCP/MBHCP Compliance/HCP Forms/2018 Revised/MBHCP Ground-Disturbance Compliance Form .090419.docx Last Updated: 9/4/19 Page 1 of 2

VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

#### EXHIBIT E CULTURAL RESOURCES ASSESSMENT AND "CALIFORNIA HISTORICAL RESOURES INFORMATION SYSTEMS (CHRIS) – CULTURAL, HISTORIC, AND ARCHAEOLOGICAL RESOURES RECORDS SEARCH"

# CULTURAL RESOURCES ASSESSMENT

Almondale Well Site Project Bakersfield, Kern County, California



April 1, 2023

### CULTURAL RESOURCES ASSESSMENT

#### Almondale Well Site Project

#### Bakersfield, Kern County, California

Prepared for:

Curtis M. Skaggs, P.E. Dee Jaspar & Associates, Inc. 2730 Unicorn Road Unit A Bakersfield, California 93308

Prepared by:

David Brunzell, M.A., RPA Contributions By: Nicholas Shepetuk, B.A., and Douglas Kazmier, B.A. BCR Consulting 505 West 8<sup>th</sup> Street Claremont, California 91711

Project No. DJA2202

National Archaeological Data Base Information:

*Type of Study:* Cultural Resources Assessment/Inventory *Resources Recorded:* None *Keywords:* Bakersfield *USGS Quadrangle:* 7.5-minute *Oildale, California* (1968)



April 1, 2023

#### MANAGEMENT SUMMARY

BCR Consulting LLC (BCR Consulting) is under contract to Dee Jasper and Associates, Inc. to complete a Cultural Resources Assessment of the proposed Vaughn Water Company Well Site Project (project) in the City of Bakersfield (City), Kern County, California. A cultural resources records search, intensive-level pedestrian field survey, Sacred Lands File Search through the Native American Heritage Commission, and vertebrate paleontological resources assessment were conducted for the project in partial fulfillment of the California Environmental Quality Act (CEQA).

The records search revealed that nine cultural resource studies have taken place resulting in the recording of two cultural resources within one-half mile of the project site. One of the nine previous studies one has previously assessed the project site for cultural resources and no cultural resources have been previously recorded within its boundaries. During the field survey BCR Consulting archaeologists identified no cultural resources or sensitivity for buried resources within the project site boundaries. Based on these results, no significant impact related to historical resources is anticipated and no further investigations are recommended for the proposed project unless:

- The proposed project is changed to include areas that have not been subject to this cultural resource assessment;
- Cultural materials are encountered during project activities.

The current study attempted to determine whether significant archaeological deposits were present on the proposed project site. Although none were yielded during the records search and field survey, ground-disturbing activities have the potential to reveal buried deposits not observed on the surface. Prior to the initiation of ground-disturbing activities, field personnel should be alerted to the possibility of buried prehistoric or historic cultural deposits. In the event that field personnel encounter buried cultural materials, work in the immediate vicinity of the find should cease and a qualified archaeologist should be retained to assess the significance of the find. The qualified archaeologist shall have the authority to stop or divert construction excavation as necessary. If the qualified archaeologist finds that any cultural resources present meet eligibility requirements for listing on the California Register or the National Register of Historic Places (National Register), plans for the treatment, evaluation, and mitigation of impacts to the find will need to be developed. Prehistoric or historic cultural materials that may be encountered during ground-disturbing activities include:

- historic-period artifacts such as glass bottles and fragments, cans, nails, ceramic and pottery fragments, and other metal objects;
- historic-period structural or building foundations, walkways, cisterns, pipes, privies, and other structural elements;
- prehistoric flaked-stone artifacts and debitage (waste material), consisting of obsidian, basalt, and or cryptocrystalline silicates;
- groundstone artifacts, including mortars, pestles, and grinding slabs;
- dark, greasy soil that may be associated with charcoal, ash, bone, shell, flaked stone, groundstone, and fire affected rocks;
- human remains.

Findings were negative during the Sacred Lands File search with the NAHC. The Legislature added requirements regarding tribal cultural resources for CEQA in Assembly Bill 52 (AB 52)

that took effect July 1, 2015. AB 52 requires consultation with California Native American tribes and consideration of tribal cultural resources in the CEQA process. By including tribal cultural resources early in the CEQA process, the legislature intended to ensure that local and Tribal governments, public agencies, and project proponents would have information available, early in the project planning process, to identify and address potential adverse impacts to tribal cultural resources. By taking this proactive approach, the legislature also intended to reduce the potential for delay and conflicts in the environmental review process. To help determine whether a project may have such an effect, the Public Resources Code requires a lead agency to consult with any California Native American tribe that requests consultation and is traditionally and culturally affiliated with the geographic area of a Proposed Project. Since the lead agency will initiate and carry out the required AB52 Native American Consultation, the results of the consultation are not provided in this report. However, this report may be used during the consultation process, and BCR Consulting staff is available to answer questions and address concerns as necessary.

According to CEQA Guidelines, projects subject to CEQA must determine whether the project would "directly or indirectly destroy a unique paleontological resource". The Paleontological Overview provided in Appendix D has recommended that:

The geologic units underlying the project area are mapped primarily as Plesitocene nonmarine deposits (Smith 1964). Pleistocene units are considered to be paleontologically sensitive. The Western Science Center does not have localities within the project area or within a 1 mile radius. However, this is likely due to the project area's distance from the museum and should not be taken as indicative of paleontological sensitivity; other repositories may have localities in the area.

Any fossils recovered from the Vaughn Water Company Well Site Project would be scientifically significant. Excavation activity associated with development of the project area could impact the paleontologically sensitive Pleistocene units close to the project area, and due to this proximity it is the recommendation of the Western Science Center that a paleontological resource mitigation program be put in place to monitor, salvage, and curate any recovered fossils associated with the current study area.

If human remains are encountered during the undertaking, State Health and Safety Code Section 7050.5 states that no further disturbance shall occur until the County Coroner has made a determination of origin and disposition pursuant to Public Resources Code Section 5097.98. The County Coroner must be notified of the find immediately. If the remains are determined to be prehistoric, the Coroner will notify the Native American Heritage Commission (NAHC), which will determine and notify a Most Likely Descendant (MLD). With the permission of the landowner or his/her authorized representative, the MLD may inspect the site of the discovery. The MLD shall complete the inspection within 48 hours of notification by the NAHC.

# TABLE OF CONTENTS

| MANAGEMENT SUMMARY                 | i      |
|------------------------------------|--------|
| INTRODUCTION<br>REGULATORY SETTING | 1<br>1 |
| NATURAL SETTING                    | 1      |
| CULTURAL SETTING                   | 5      |
| PREHISTORY                         |        |
| PERSONNEL                          | 5      |
| METHODS                            | 3      |
| RESEARCH                           | 2<br>5 |
| RESULTS                            | 3      |
| RESEARCH                           | 5<br>5 |
| RECOMMENDATIONS                    | 3      |
| REFERENCES                         | 9      |

#### FIGURES

| 1: Project Location Map . | 2 |
|---------------------------|---|
|---------------------------|---|

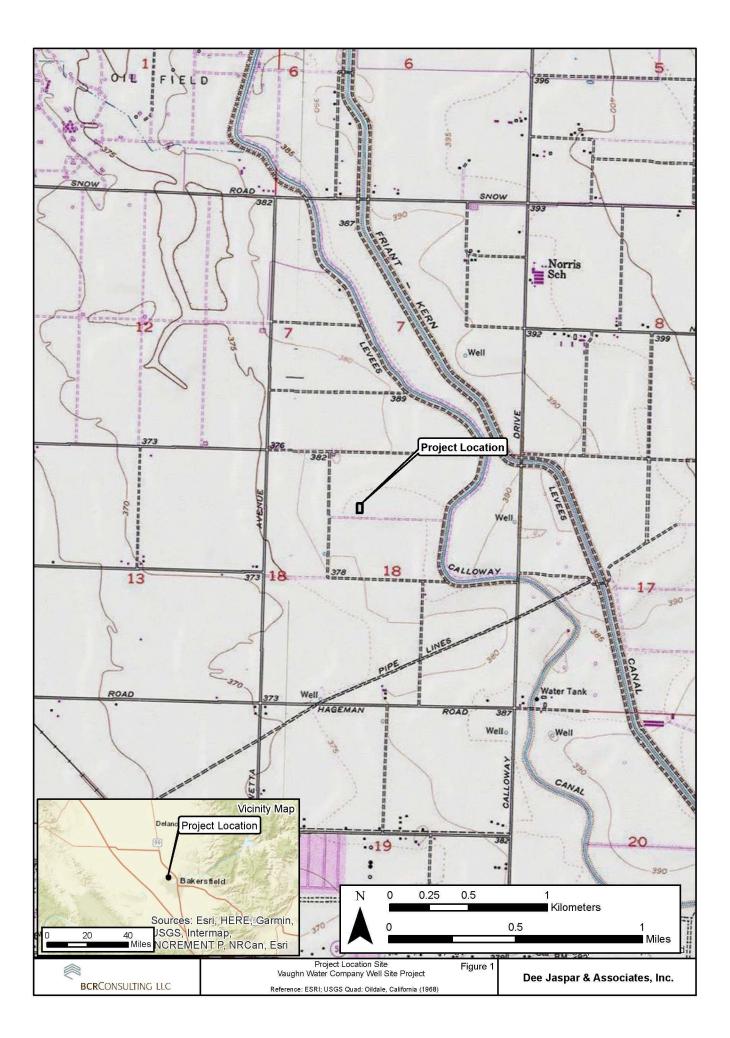
#### TABLES

#### **APPENDICES**

- A: RECORDS SEARCH BIBLIOGRAPHY
- B: PROJECT PHOTOGRAPHS
- C: NATIVE AMERICAN HERITAGE COMMISSION SACRED LANDS FILE SEARCH
- D: PALEONTOLOGICAL RESOURCES OVERVIEW

#### INTRODUCTION

BCR Consulting LLC is under contract to Dee Jaspar & Associates, LLC to conduct a Cultural Resources Assessment of the proposed Almondale Well Site Project in the City of Bakersfield, Kern County, California. The project site is located in Section 18 of Township 29 South, Range 28 East, Mount Diablo Baseline and Meridian, in the City of Bakersfield. It is depicted on the United States Geological Survey (USGS) *Oildale, California* (1968) 7.5-minute topographic quadrangle (Figure 1). The work is being performed in fulfillment of requirements of the California Environmental Quality Act (CEQA).


#### **REGULATORY SETTING**

**The California Environmental Quality Act.** CEQA applies to all discretionary projects undertaken or subject to approval by the state's public agencies (California Code of Regulations 14(3), § 15002(i)). Under CEQA, "A project with an effect that may cause a substantial adverse change in the significance of a historical resource is a project that may have a significant effect on the environment" (Cal. Code Regs. tit. 14(3), § 15064.5(b)). State CEQA Guidelines section 15064.5(a) defines a "historical resource" as a resource that meets one or more of the following criteria:

- Listed in, or eligible for listing in, the California Register of Historical Resources (California Register)
- Listed in a local register of historical resources (as defined at Cal. Public Res. Code § 5020.1(k))
- Identified as significant in a historical resource survey meeting the requirements of § 5024.1(g) of the Cal. Public Res. Code
- Determined to be a historical resource by a project's lead agency (Cal. Code Regs. tit. 14(3), § 15064.5(a))

A historical resource consists of "Any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California...Generally, a resource shall be considered by the lead agency to be 'historically significant' if the resource meets the criteria for listing in the California Register of Historical Resources" (Cal. Code Regs. tit. 14(3), § 15064.5(a)(3)).

The significance of a historical resource is impaired when a project demolishes or materially alters in an adverse manner those physical characteristics of a historical resource that convey its historical significance and that justify its eligibility for the California Register. If an impact on a historical or archaeological resource is significant, CEQA requires feasible measures to minimize the impact (State CEQA Guidelines § 15126.4 (a)(1)). Mitigation of significant impacts must lessen or eliminate the physical impact that the project will have on the resource. Section 5024.1 of the Cal. Public Res. Code established the California Register. Generally, a resource is considered by the lead agency to be "historically significant" if the resource meets the criteria for listing in the California Register (Cal. Code Regs. tit. 14(3), § 15064.5(a)(3)). The eligibility criteria for the California Register are similar to those of the National Register of Historic Places (National Register), and a resource that meets one or more of the eligibility criteria of the National Register will be eligible for the California Register.



The California Register program encourages public recognition and protection of resources of architectural, historical, archaeological, and cultural significance, identifies historical resources for state and local planning purposes, determines eligibility for state historic preservation grant funding and affords certain protections under CEQA. Criteria for Designation:

- 1. Associated with events that have made a significant contribution to the broad patterns of local or regional history or the cultural heritage of California or the United States.
- 2. Associated with the lives of persons important to local, California or national history.
- 3. Embodies the distinctive characteristics of a type, period, region or method of construction or represents the work of a master or possesses high artistic values.
- 4. Has yielded, or has the potential to yield, information important to the prehistory or history of the local area, California or the nation.

In addition to meeting one or more of the above criteria, the California Register requires that sufficient time has passed since a resource's period of significance to "obtain a scholarly perspective on the events or individuals associated with the resources." (CCR 4852 [d][2]). Fifty years is normally considered sufficient time for a potential historical resource, and in order that the evaluation remain valid for a minimum of five years after the date of this report, all resources older than 45 years (i.e. resources from the "historic-period") will be evaluated for California Register listing eligibility, or CEQA significance. The California Register also requires that a resource possess integrity. This is defined as the ability for the resource to convey its significance through seven aspects: location, setting, design, materials, workmanship, feeling, and association.

Finally, CEQA requires that significant effects on unique archaeological resources be considered and addressed. CEQA defines a unique archaeological resource as any archaeological artifact, object, or site about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

- 1. Contains information needed to answer important scientific research questions and there is a demonstrable public interest in that information.
- 2. Has a special and particular quality such as being the oldest of its type or the best available example of its type.
- 3. Is directly associated with a scientifically recognized important prehistoric or historic event or person.

CEQA Guidelines Section 15064.5 Appendix G includes significance criteria relative to archaeological and historical resources. These have been utilized as thresholds of significance here, and a project would have a significant environmental impact if it would:

a) cause a substantial adverse change in the significance of a historical resource as defined in section 10564.5;

- b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 10564.5;
- c) Disturb any human remains, including those interred outside of formal cemeteries.

**Tribal Cultural Resources.** The Legislature added requirements regarding tribal cultural resources for CEQA in Assembly Bill 52 (AB 52) that took effect July 1, 2015. AB 52 requires consultation with California Native American tribes and consideration of tribal cultural resources in the CEQA process. By including tribal cultural resources early in the CEQA process, the legislature intended to ensure that local and Tribal governments, public agencies, and project proponents would have information available, early in the project planning process, to identify and address potential adverse impacts to tribal cultural resources. By taking this proactive approach, the legislature also intended to reduce the potential for delay and conflicts in the environmental review process. To help determine whether a project may have such an effect, the Public Resources Code requires a lead agency to consult with any California Native American tribe that requests consultation and is traditionally and culturally affiliated with the geographic area of a Proposed Project. Since the City will initiate and carry out the required AB52 Native American Consultation, the results of the consultation are not provided in this report. However, this report may be used during the consultation process, and BCR Consulting staff are available to answer questions and address comments as necessary.

**Paleontological Resources.** CEQA provides guidance relative to significant impacts on paleontological resources, indicating that a project would have a significant impact on paleontological resources if it disturbs or destroys a unique paleontological resource or site or unique geologic feature. Section 5097.5 of the California Public Resources Code specifies that any unauthorized removal of paleontological remains is a misdemeanor. Further, California Penal Code Section 622.5 sets the penalties for damage or removal of paleontological resources. CEQA documentation prepared for projects would be required to analyze paleontological resources as a condition of the CEQA process to disclose potential impacts. Please note that as of January 2018 paleontological resources are considered in the geological rather than cultural category. Therefore, paleontological resources are not summarized in the body of this report. A paleontological overview completed by the Western Science Center is provided as Appendix D.

#### NATURAL SETTING

The elevation of the APE is approximately 385 feet above mean sea level. It is located in the central portion of southern San Joaquin Valley. Local rainfall averages approximately eight inches per year, and the runoff is channeled from northeast to southwest. Most of the local vegetation currently consists of non-native seasonal grasses and Russian thistle. Prior to the introduction of large-scale agriculture, the San Joaquin River and Tulare Lake's system of channels, sloughs, and tule-choked marshes defined the local ecosystem (Wallace 1978:462). As a result, the biotic character of the valley was historically much more diversified than is presently evident. Large freshwater marshes and vast expanses of grassland supported a variety of wildlife, including grizzly bears and wolves (both locally extinct), tule elk, jackrabbits, quail, and numerous fish, rodents, reptiles and birds (Twisselmann 1967, Osborne 1992, Cogswell 1977, and Moyle 1976).

#### CULTURAL SETTING

#### Prehistory

The APE is situated within the traditional boundaries of the Southern Valley Yokuts. This prehistoric population depended heavily on the Tulare, Buena Vista, and Kern Lakes and their connecting sloughs and rivers for sustenance and transportation (Wallace 1978:448). The local Southern Valley Yokuts, referred to as the Chuxoxi, represented one of the southernmost Yokut political units and were associated with the channels and sloughs of the Kern River delta (Wallace 1978:449; Kroeber 1925:483). Chuxoxi trade routes and rights to the delta allowed them to reap the benefits of the related perennial water sources. This enabled local populations to pursue a relatively sedentary lifestyle in an otherwise arid climate. Prehistorically, such sedentism often coincides with a village-style residential model in which residential bases remain the same or seasonal, while specialized procurement parties are deployed to more remote areas to collect specialized resources (Binford 1980, Thomas 1983). This village model has been locally supported by early ethnographers, who considered Yokuts unique in California for forming "true tribes" and for developing an unparalleled array of dialects (Kroeber 1925:474).

#### History

The first Europeans to establish contact with the Southern Valley Yokuts were Spanish troops led by Captain Don Pedro Fages in pursuit of deserters. Father Francisco Garces also travelled through the San Joaquin Valley searching for an overland route from Yuma to Monterey. During his travels, Garces noted positive interactions with locals (see Smith 1939, Bailey 1984). The Mexican era (1821-1848) saw little notable cultural exchange between Mexicans and Southern Valley Yokuts, although an 1833 malaria epidemic devastated the local native population (Wallace 1978:460). The ensuing American era, punctuated by California's annexation into the United States in 1848, resulted in overwhelming Anglo settlement and seizing of Indian lands, and disrupted any remaining prehistoric Yokut influence in the San Joaquin Valley. Mining and ranching represented the early historical focus of the San Joaquin Valley, although the region's abundant natural water supply, mild climate, and huge tracts of arable land soon led to the successful development of agriculture. The resulting diversion of local water and skyrocketing real estate values transformed the physical and economic character of the valley and have allowed it to remain one of the most productive agricultural regions in the world to this day (Preston 1981).

#### PERSONNEL

David Brunzell, M.A., RPA, acted as the Project Manager and Principal Investigator for the current study. Southern San Joaquin Valley Information Center (SSJVIC) personnel completed the cultural resources records search at California State University, Bakersfield. BCR Consulting Staff Archaeologist Douglas Kazmier, B.A., completed the pedestrian field survey. Mr. Brunzell compiled the technical report with contributions by Mr. Kazmier and BCR Consulting Archaeological Crew Chief Nicholas Shepetuk, B.A.

#### METHODS

#### Research

Prior to fieldwork, an archaeological records search was conducted at the SSJVIC. This included a review of all recorded historic and prehistoric cultural resources, as well as a review of known cultural resources, and survey and excavation reports generated from projects located within one-half mile of the project site (see Appendix A). In addition, a review was conducted of the National Register of Historic Places (National Register), the California Register of Historical Resources (California Register), and documents and inventories from the California Office of Historic Preservation including the lists of California Historical Landmarks, California Points of Historical Interest, Listing of National Register Properties, and the Inventory of Historic Structures.

#### Field Survey

Mr. Kazmier conducted a pedestrian field survey of the APE on January 2, 2023. The survey was conducted by walking parallel transects spaced approximately 15 meters apart across 100 percent of the APE. Soil exposures, including natural and artificial clearings were carefully inspected for evidence of cultural resources.

#### RESULTS

#### Research

Data from the SSJVIC revealed that nine cultural resource studies have taken place resulting in the recording of two cultural resources (both historic-period) within a one-half mile radius of the project site. Of the nine previous studies, one has previously assessed the project site, resulting in the recording of no cultural resources within its boundaries (see Appendix A).

| USGS 7.5 Min<br>Quad | Cultural Resources Within One Half-Mile of Project Site                                                  | Studies W/in One-<br>Half Mile                                   |  |
|----------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Oildale (1968)       | P-15-7233: Historic-Period Canal (0.4 Miles E)<br>P-15-10561: Prehistoric Lithic Scatter (0.45 Miles NW) | KE-962, 1389*,<br>1399, 1431, 1819,<br>2488, 2716, 2807,<br>3677 |  |

\*Previously assessed the project site

#### Field Survey

During the field survey, Mr. Kazmier carefully inspected the project site, and identified no cultural resources/historic properties within its boundaries. Surface visibility was approximately 20 percent within the project site. Soil in the area comprised moderately-dark-grayish-brown sandy silt with no gravel inclusions. Vegetation was characterized as landscaped non-native grasses and young ornamental trees. Ground disturbances were severe and resulted from a variety factors including grading, landscaping, and construction of the surrounding infrastructure.

#### RECOMMENDATIONS

BCR Consulting conducted a Cultural Resources Assessment of the Almondale Well Site Project in the City of Bakersfield, Kern County, California. This work was completed pursuant to CEQA. The records search and field survey did not identify any cultural resources (including prehistoric or historic archaeological sites or historic buildings) within the project site. Furthermore, research results combined with surface conditions have failed to indicate sensitivity for buried cultural resources. Based on these results, BCR Consulting recommends a finding of no historical resources affected for this undertaking. Based on these results, no significant impact related to historical resources is anticipated and no further investigations are recommended for the proposed project unless:

- The proposed project is changed to include areas that have not been subject to this cultural resource assessment;
- Cultural materials are encountered during project activities.

The current study attempted to determine whether significant archaeological deposits were present on the proposed project site. Although none were yielded during the records search and field survey, ground-disturbing activities have the potential to reveal buried deposits not observed on the surface. Prior to the initiation of ground-disturbing activities, field personnel should be alerted to the possibility of buried prehistoric or historic cultural deposits. In the event that field personnel encounter buried cultural materials, work in the immediate vicinity of the find should cease and a qualified archaeologist should be retained to assess the significance of the find. The qualified archaeologist shall have the authority to stop or divert construction excavation as necessary. If the qualified archaeologist finds that any cultural resources present meet eligibility requirements for listing on the California Register or the National Register of Historic Places (National Register), plans for the treatment, evaluation, and mitigation of impacts to the find will need to be developed. Prehistoric or historic cultural materials that may be encountered during ground-disturbing activities include:

- historic-period artifacts such as glass bottles and fragments, cans, nails, ceramic and pottery fragments, and other metal objects;
- historic-period structural or building foundations, walkways, cisterns, pipes, privies, and other structural elements;
- prehistoric flaked-stone artifacts and debitage (waste material), consisting of obsidian, basalt, and or cryptocrystalline silicates;
- groundstone artifacts, including mortars, pestles, and grinding slabs;
- dark, greasy soil that may be associated with charcoal, ash, bone, shell, flaked stone, groundstone, and fire affected rocks;
- human remains.

Findings were negative during the Sacred Lands File search with the NAHC. The Legislature added requirements regarding tribal cultural resources for CEQA in Assembly Bill 52 (AB 52) that took effect July 1, 2015. AB 52 requires consultation with California Native American tribes and consideration of tribal cultural resources in the CEQA process. By including tribal cultural resources early in the CEQA process, the legislature intended to ensure that local and Tribal governments, public agencies, and project proponents would have information available, early in the project planning process, to identify and address potential adverse impacts to tribal cultural resources. By taking this proactive approach, the legislature also intended to reduce the potential for delay and conflicts in the environmental review process. To help determine whether a project may have such an effect, the Public Resources Code requires a lead agency to consult with any California Native American tribe that requests consultation and is traditionally and culturally affiliated with the geographic area of a Proposed Project. Since the lead agency will initiate and carry out the required AB52 Native American

Consultation, the results of the consultation are not provided in this report. However, this report may be used during the consultation process, and BCR Consulting staff is available to answer questions and address concerns as necessary.

According to CEQA Guidelines, projects subject to CEQA must determine whether the project would "directly or indirectly destroy a unique paleontological resource". The Paleontological Overview provided in Appendix D has recommended that:

The geologic units underlying the project area are mapped primarily as Plesitocene nonmarine deposits (Smith 1964). Pleistocene units are considered to be paleontologically sensitive. The Western Science Center does not have localities within the project area or within a 1 mile radius. However, this is likely due to the project area's distance from the museum and should not be taken as indicative of paleontological sensitivity; other repositories may have localities in the area.

Any fossils recovered from the Vaughn Water Company Well Site Project would be scientifically significant. Excavation activity associated with development of the project area could impact the paleontologically sensitive Pleistocene units close to the project area, and due to this proximity it is the recommendation of the Western Science Center that a paleontological resource mitigation program be put in place to monitor, salvage, and curate any recovered fossils associated with the current study area.

If human remains are encountered during the undertaking, State Health and Safety Code Section 7050.5 states that no further disturbance shall occur until the County Coroner has made a determination of origin and disposition pursuant to Public Resources Code Section 5097.98. The County Coroner must be notified of the find immediately. If the remains are determined to be prehistoric, the Coroner will notify the Native American Heritage Commission (NAHC), which will determine and notify a Most Likely Descendant (MLD). With the permission of the landowner or his/her authorized representative, the MLD may inspect the site of the discovery. The MLD shall complete the inspection within 48 hours of notification by the NAHC.

#### REFERENCES

Bailey, Richard C.

1984 Heart of the Golden Empire: An Illustrated History of Bakersfield. Windsor Publications, Inc., Woodland Hills, California.

#### Binford, L.

1980 Willow Smoke And Dog's Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. *American Antiquity* 45:1-17.

#### Cogswell, Howard L.

1977 Water Birds of California. University of California Press, Berkeley.

#### Kroeber, Alfred L.

1925 Handbook of the Indians of California. Bureau of American Ethnology Bulletin No. 78. Washington D.C.: Smithsonian Institution. Reprinted 1976, Dover. New York.

#### Moyle, Peter B.

1976 Inland Fishes of California. University of California Press, Berkeley.

#### Osborne, Richard H.

1992 An Ethnographic Overview of the Southern Valley Yokuts. *Kern County Archaeological Society Journal* 3:36-65.

Preston, William L.

1981 Vanishing Landscapes. University of California Press, Berkeley

#### Smith, Arthur A.

1964 Geologic Map of California, Bakersfield Sheet. 1:250,000. The Resources Agency Department of Conservation.

#### Smith, Wallace

1939 Garden of the Sun. Lymanhouse, Los Angeles.

#### Thomas, D.H.

1983 The Archaeology of Monitor Valley I: Epistemology. New York: American Museum of Natural History Anthropological Papers 58:1.

#### Twisselmann, Ernest C.

1967 A Flora of Kern County, California. University of San Francisco Press.

#### United States Geological Survey

1968 Oildale, California 7.5-minute topographic quadrangle map.

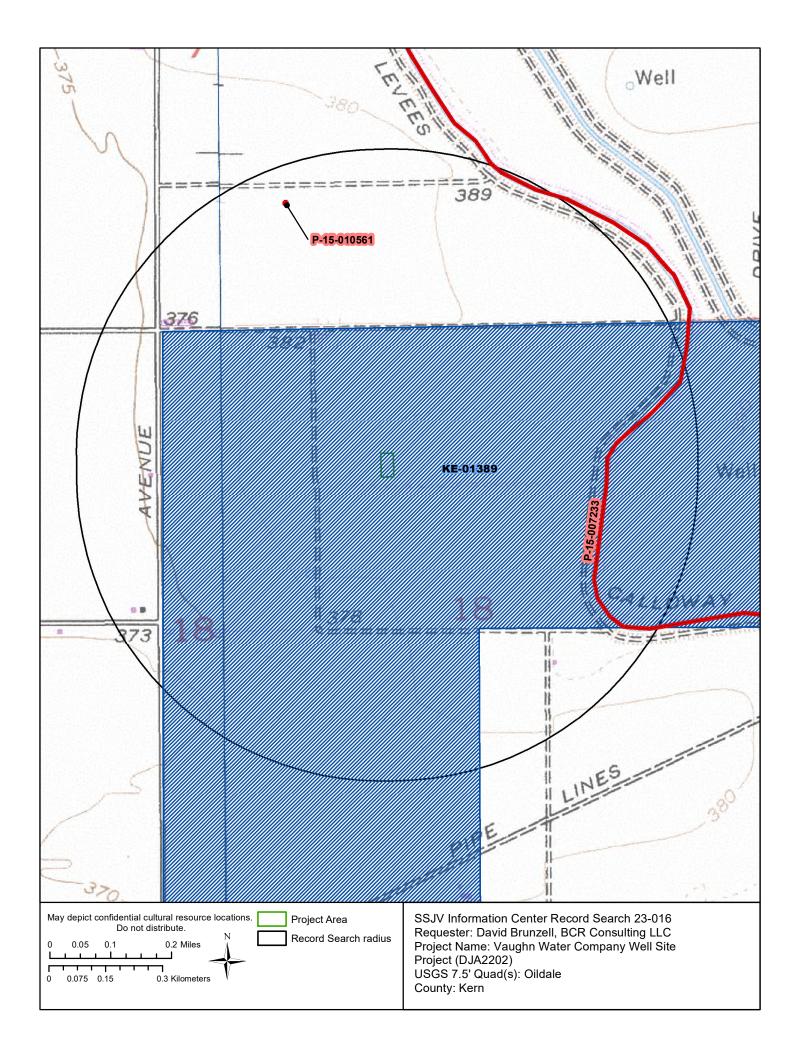
#### Wallace, William J.

1978 The Southern Valley Yokuts, and The Northern Valley Yokuts. In *Handbook of the North American Indians, Vol. 8, California,* edited by W.L. d'Azevedo, pp. 448-470. W.C. Sturtevant, General Editor. Smithsonian Institution, Washington D.C.

# APPENDIX A

# **RECORDS SEARCH BIBLIOGRAPHY**

# **Report List**


SSJVIC Record Search 23-016

| Report No. | Other IDs                                                                   | Year | Author(s)                                | itle Affiliation                                                                                                                                                |                                                                             | Resources |  |
|------------|-----------------------------------------------------------------------------|------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|--|
| KE-00962   | NADB-R - 1141471;<br>Submitter - CRF-88-<br>19                              | 1988 | Pruett, Catherine Lewis and Acker, Karen | Environmental Impact Evaluation: an<br>Archaeological Survey of 240 Acres Located<br>on Jewetta Avenue and Hageman Road,<br>Rosedale                            | Cultural Resource Facilitiy,<br>California State University,<br>Bakersfield |           |  |
| KE-01389   |                                                                             | 1990 | Schiffman, Robert A.                     | Archaeological Investigation of Section 18,<br>Township 29S., R27E. Kern County, California                                                                     | Bakersfield College                                                         |           |  |
| KE-01399   |                                                                             | 1991 | Schiffman, Robert A.                     | Archaeological Investigation of 275 Acre<br>Santa Fe Ranch and 80 Acre Rosedale<br>Ranch Sections 13 & 14, Township 29S.,<br>Range 26E. Kern County, California | Bakersfield College                                                         |           |  |
| KE-01431   |                                                                             | 1992 | Schiffman, Robert A.                     | Archaeological Investigation of Parcel Map<br>#9826 Section 12 T.29S.; R.26E. Kern<br>County, California                                                        | Bakersfield College                                                         |           |  |
| KE-01819   |                                                                             | 1991 | Yohe II, Robert M.                       | Archaeological Assessment of 200 Acres near Rosedale, Kern County, California                                                                                   | Cultural Resource Facility,<br>California State University,<br>Bakersfield  |           |  |
| KE-02488   | Submitter - 00-18;<br>Submitter - PR Job<br>1473                            | 2001 | Fleagle, Dorothy                         | Addendum: A Cultural Resources<br>Assessment for Parcel Map Number 10751,<br>Approximately 372 Acres in Northwest<br>Bakersfield, Kern County, California       | Three Girls and a Shovel 15-010561                                          |           |  |
| KE-02716   |                                                                             | 2002 | Schiffman, Robert A.                     | Archaeological Investigation for Tentative<br>Tract 6153, Kern County, California                                                                               | Individual Consultants                                                      |           |  |
| KE-02807   | Caltrans - 06-KER-<br>58-R35.4/R52.3;<br>Submitter - Contract<br>No. 06G171 | 1993 | Herbert, Rand F.                         | Historic Resource Evaluation Report: Tier 1,<br>Route Adoption on Route 58 Between I-5 and<br>State Route 99                                                    | JRP Historical Consulting<br>Services                                       |           |  |
| KE-03677   |                                                                             | 2009 | Hudlow, Scott                            | A Phase I Cultural Resource Survey for<br>Vesting Tentative Parcel Map 11788, City of<br>Bakersfield, California                                                | Hudlow Cultural Resource<br>Associates (Bakersfield)                        |           |  |

#### **Resource List**

#### SSJVIC Record Search 23-016

| Primary No. | Trinomial | Other IDs                                                                                                                           | Туре      | Age         | Attribute codes | Recorded by                                                                                                                                                                                                                            | Reports  |
|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| P-15-007233 |           | Resource Name - Calloway<br>Canal;<br>Resource Name - JKE-022;<br>OTIS Resource Number -<br>503607;<br>OHP Property Number - 110729 | Structure | Historic    | HP20            | 1996 (Clarence Caesar);<br>2009 (Steven J. Melvin, Rebecca<br>Flores, JRP Historical Consulting,<br>LLC.);<br>2009 (Polly S. Allen, Toni Webb,<br>JRP Historical Consulting, LLC.);<br>2016 (Jennifer Gorman, ASM<br>Affiliates, Inc.) | KE-05044 |
| P-15-010561 |           | Resource Name - IF-1                                                                                                                | Other     | Prehistoric | AP02            | 2009 (Dorothy Fleagle, Three Girls and a Shovel, LLC.)                                                                                                                                                                                 | KE-02488 |



# **APPENDIX B**

# **PROJECT PHOTOGRAPHS**



Photo 1: Overview of Project Site



Photo 2: Overview of Project Site



Photo 3: Overview of Project Site



Photo 4: Soil Within Project Site



Photo 5: Overview of Project Site



Photo 6: Overview of Project Site

### **APPENDIX C**

### NATIVE AMERICAN HERITAGE COMMISSION SACRED LANDS FILE SEARCH



CHAIRPERSON Laura Miranda Luiseño

VICE CHAIRPERSON Reginald Pagaling Chumash

SECRETARY Sara Dutschke Miwok

COMMISSIONER Isaac Bojorquez Ohlone-Costanoan

Commissioner Buffy McQuillen Yokayo Pomo, Yuki, Nomlaki

COMMISSIONER Wayne Nelson Luiseño

Commissioner Stanley Rodriguez Kumeyaay

COMMISSIONER [Vacant]

COMMISSIONER [Vacant]

EXECUTIVE SECRETARY Raymond C. Hitchcock Miwok/Nisenan

### NAHC HEADQUARTERS

1550 Harbor Boulevard Suite 100 West Sacramento, California 95691 (916) 373-3710 nahc@nahc.ca.gov NAHC.ca.gov

## NATIVE AMERICAN HERITAGE COMMISSION

January 19, 2023

David Brunzell BCR Consulting LLC

Via Email to: <u>bcrllc2008@gmail.com</u>

### Re: Vaughn Water Company Well Site Project (DJA2202), Kern County

Dear Mr. Brunzell:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File (SLF) was completed for the information you have submitted for the above referenced project. The results were <u>negative</u>. However, the absence of specific site information in the SLF does not indicate the absence of cultural resources in any project area. Other sources of cultural resources should also be contacted for information regarding known and recorded sites.

Attached is a list of Native American tribes who may also have knowledge of cultural resources in the project area. This list should provide a starting place in locating areas of potential adverse impact within the proposed project area. I suggest you contact all of those indicated; if they cannot supply information, they might recommend others with specific knowledge. By contacting all those listed, your organization will be better able to respond to claims of failure to consult with the appropriate tribe. If a response has not been received within two weeks of notification, the Commission requests that you follow-up with a telephone call or email to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from tribes, please notify me. With your assistance, we can assure that our lists contain current information.

If you have any questions or need additional information, please contact me at my email address: <u>Cameron.vela@nahc.ca.gov</u>.

Sincerely,

Campon Vola

Cameron Vela Cultural Resources Analyst

Attachment

### Native American Heritage Commission Native American Contact List Kern County 1/19/2023

### Big Pine Paiute Tribe of the Owens Valley

James Rambeau, Chairperson P. O. Box 700 Big Pine, CA, 93513 Phone: (760) 938 - 2003 Fax: (760) 938-2942 j.rambeau@bigpinepaiute.org

#### Big Pine Paiute Tribe of Owens Valley

Sally Manning, Environmental Director P. O. Box 700 Big Pine, CA, 93513 Phone: (760) 938 - 2003 s.manning@bigpinepaiute.org

#### Big Pine Paiute Tribe of the Owens Valley

Danelle Gutierrez, Tribal Historic Preservation Officer P.O. Box 700 Big Pine, CA, 93513 Phone: (760) 938 - 2003 Fax: (760) 938-2942 d.gutierrez@bigpinepaiute.org

#### Chumash Council of Bakersfield

Julio Quair, Chairperson 729 Texas Street Chumash Bakersfield, CA, 93307 Phone: (661) 322 - 0121 chumashtribe@sbcglobal.net

# Kitanemuk & Yowlumne Tejon

Indians Delia Dominguez, Chairperson 115 Radio Street Bakersfield, CA, 93305 Phone: (626) 339 - 6785 2deedominguez@gmail.com

Kitanemuk Southern Valley Yokut

### Santa Rosa Rancheria Tachi

**Yokut Tribe** Leo Sisco, Chairperson P.O. Box 8 Lemoore, CA, 93245 Phone: (559) 924 - 1278 Fax: (559) 924-3583

Southern Valley Yokut

**Kitanemuk** 

### **Tejon Indian Tribe**

Colin Rambo, P.O. Box 640 Arvin, CA, 93203 Phone: (661) 834 - 8566 colin.rambo@tejonindiantribensn.gov

### Tejon Indian Tribe

Octavio Escobedo, Chairperson P.O. Box 640 Kitanemuk Arvin, CA, 93203 Phone: (661) 834 - 8566 oescobedo@tejonindiantribensn.gov

### Tule River Indian Tribe

Joey Garfield, Tribal Archaeologist P. O. Box 589 Yokut Porterville, CA, 93258 Phone: (559) 783 - 8892 Fax: (559) 783-8932 joey.garfield@tulerivertribensn.gov

### Tule River Indian Tribe

Neil Peyron, Chairperson P.O. Box 589 Yokut Porterville, CA, 93258 Phone: (559) 781 - 4271 Fax: (559) 781-4610 neil.peyron@tulerivertribe-nsn.gov

### Tule River Indian Tribe

Kerri Vera, Environmental Department P. O. Box 589 Yokut Porterville, CA, 93258 Phone: (559) 783 - 8892 Fax: (559) 783-8932 kerri.vera@tulerivertribe-nsn.gov

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resource Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed Vaughn Water Company Well Site Project (DJA2202), Kern County.

### APPENDIX D

### PALEONTOLOGICAL RESOURCES OVERVIEW



January 20<sup>th</sup>, 2023

BCR Consulting, LLC Doug Kazmier 505 W. 8<sup>th</sup> St. Claremont, CA 91711

Dear Mr. Kazmier,

This letter presents the results of a record search conducted for the Vaughn Water Company Well Site Project located in the city of Bakersfield, Kern County, CA. The project site is located south of Wind Blossom Avenue, east of Polar Drive, and west of Verdugo Lane, on Township 29 South, Range 27 East, Section 18 on the *Oildale CA* USGS 7.5 minute quadrangle.


The geologic units underlying the project area are mapped primarily as Plesitocene nonmarine deposits (Smith, 1964). Pleistocene units are considered to be paleontologically sensitive. The Western Science Center does not have localities within the project area or within a 1 mile radius. However, this is likely due to the project area's distance from the museum and should not be taken as indicative of paleontological sensitivity; other repositories may have localities in the area.

Any fossils recovered from the Vaughn Water Company Well Site Project would be scientifically significant. Excavation activity associated with development of the project area could impact the paleontologically sensitive Pleistocene units close to the project area, and due to this proximity it is the recommendation of the Western Science Center that a paleontological resource mitigation program be put in place to monitor, salvage, and curate any recovered fossils associated with the current study area.

If you have any questions, or would like further information, please feel free to contact me at <u>bstoneburg@westerncentermuseum.org</u>.

Sincerely,

Brittney Elizabeth Stoneburg, MSc Collections Manager



Q: Quaternary alluvium and marine deposits (Pliocene to Holocene) Vaughn Water Company Well Site Project



16

09



1 mi

Relising Canels Chicken Fingers

21



North

15

VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

### EXHIBIT F "NATIVE AMERICAN HERITAGE COMMISSION – CULTURAL RESOURCES RESEARCH"



CHAIRPERSON Laura Miranda Luiseño

VICE CHAIRPERSON Reginald Pagaling Chumash

SECRETARY Sara Dutschke Miwok

COMMISSIONER Isaac Bojorquez Ohlone-Costanoan

Commissioner Buffy McQuillen Yokayo Pomo, Yuki, Nomlaki

COMMISSIONER Wayne Nelson Luiseño

Commissioner Stanley Rodriguez Kumeyaay

COMMISSIONER [Vacant]

COMMISSIONER [Vacant]

EXECUTIVE SECRETARY Raymond C. Hitchcock Miwok/Nisenan

### NAHC HEADQUARTERS

1550 Harbor Boulevard Suite 100 West Sacramento, California 95691 (916) 373-3710 nahc@nahc.ca.gov NAHC.ca.gov

## NATIVE AMERICAN HERITAGE COMMISSION

January 19, 2023

David Brunzell BCR Consulting LLC

Via Email to: <u>bcrllc2008@gmail.com</u>

### Re: Vaughn Water Company Well Site Project (DJA2202), Kern County

Dear Mr. Brunzell:

A record search of the Native American Heritage Commission (NAHC) Sacred Lands File (SLF) was completed for the information you have submitted for the above referenced project. The results were <u>negative</u>. However, the absence of specific site information in the SLF does not indicate the absence of cultural resources in any project area. Other sources of cultural resources should also be contacted for information regarding known and recorded sites.

Attached is a list of Native American tribes who may also have knowledge of cultural resources in the project area. This list should provide a starting place in locating areas of potential adverse impact within the proposed project area. I suggest you contact all of those indicated; if they cannot supply information, they might recommend others with specific knowledge. By contacting all those listed, your organization will be better able to respond to claims of failure to consult with the appropriate tribe. If a response has not been received within two weeks of notification, the Commission requests that you follow-up with a telephone call or email to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from tribes, please notify me. With your assistance, we can assure that our lists contain current information.

If you have any questions or need additional information, please contact me at my email address: <u>Cameron.vela@nahc.ca.gov</u>.

Sincerely,

Campon Vola

Cameron Vela Cultural Resources Analyst

Attachment

### Native American Heritage Commission Native American Contact List Kern County 1/19/2023

### Big Pine Paiute Tribe of the Owens Valley

James Rambeau, Chairperson P. O. Box 700 Big Pine, CA, 93513 Phone: (760) 938 - 2003 Fax: (760) 938-2942 j.rambeau@bigpinepaiute.org

#### Big Pine Paiute Tribe of Owens Valley

Sally Manning, Environmental Director P. O. Box 700 Big Pine, CA, 93513 Phone: (760) 938 - 2003 s.manning@bigpinepaiute.org

#### Big Pine Paiute Tribe of the Owens Valley

Danelle Gutierrez, Tribal Historic Preservation Officer P.O. Box 700 Big Pine, CA, 93513 Phone: (760) 938 - 2003 Fax: (760) 938-2942 d.gutierrez@bigpinepaiute.org

#### Chumash Council of Bakersfield

Julio Quair, Chairperson 729 Texas Street Chumash Bakersfield, CA, 93307 Phone: (661) 322 - 0121 chumashtribe@sbcglobal.net

# Kitanemuk & Yowlumne Tejon

Indians Delia Dominguez, Chairperson 115 Radio Street Bakersfield, CA, 93305 Phone: (626) 339 - 6785 2deedominguez@gmail.com

Kitanemuk Southern Valley Yokut

### Santa Rosa Rancheria Tachi

**Yokut Tribe** Leo Sisco, Chairperson P.O. Box 8 Lemoore, CA, 93245 Phone: (559) 924 - 1278 Fax: (559) 924-3583

Southern Valley Yokut

**Kitanemuk** 

### **Tejon Indian Tribe**

Colin Rambo, P.O. Box 640 Arvin, CA, 93203 Phone: (661) 834 - 8566 colin.rambo@tejonindiantribensn.gov

### Tejon Indian Tribe

Octavio Escobedo, Chairperson P.O. Box 640 Kitanemuk Arvin, CA, 93203 Phone: (661) 834 - 8566 oescobedo@tejonindiantribensn.gov

### Tule River Indian Tribe

Joey Garfield, Tribal Archaeologist P. O. Box 589 Yokut Porterville, CA, 93258 Phone: (559) 783 - 8892 Fax: (559) 783-8932 joey.garfield@tulerivertribensn.gov

### Tule River Indian Tribe

Neil Peyron, Chairperson P.O. Box 589 Yokut Porterville, CA, 93258 Phone: (559) 781 - 4271 Fax: (559) 781-4610 neil.peyron@tulerivertribe-nsn.gov

### Tule River Indian Tribe

Kerri Vera, Environmental Department P. O. Box 589 Yokut Porterville, CA, 93258 Phone: (559) 783 - 8892 Fax: (559) 783-8932 kerri.vera@tulerivertribe-nsn.gov

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resource Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed Vaughn Water Company Well Site Project (DJA2202), Kern County. VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

EXHIBIT G "NATIONAL COOOPERATIVE SOIL SURVEY – WEB SOIL SURVEY MAP"



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Kern County, California, Northwestern Part



## Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

| Preface                                                       | 2  |
|---------------------------------------------------------------|----|
| How Soil Surveys Are Made                                     |    |
| Soil Map                                                      | 8  |
| Soil Map                                                      |    |
| Legend                                                        |    |
| Map Unit Legend                                               | 11 |
| Map Unit Descriptions                                         | 11 |
| Kern County, California, Northwestern Part                    | 13 |
| 174—Kimberlina fine sandy loam, 0 to 2 percent slopes MLRA 17 | 13 |
| References                                                    | 15 |

## **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

### Custom Soil Resource Report Soil Map



| MAP LEGEND                                                             |                                                                                                                                                                                                                 |                          |                                                                                                        | MAP INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Area of Int                                                            | erest (AOI)<br>Area of Interest (AOI)                                                                                                                                                                           | 8                        | Spoil Area<br>Stony Spot                                                                               | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Soils                                                                  | Soil Map Unit Polygons<br>Soil Map Unit Lines                                                                                                                                                                   | 00<br>V                  | Very Stony Spot<br>Wet Spot                                                                            | Please rely on the bar scale on each map sheet for map measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Special                                                                | Soil Map Unit Points Point Features                                                                                                                                                                             | ۵<br>••                  | Other<br>Special Line Features                                                                         | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Special<br>⊗<br>×<br>∧<br>×<br>∞<br>∧<br><br>∞<br>∧<br><br>∞<br>0<br>0 | Point Features<br>Blowout<br>Borrow Pit<br>Clay Spot<br>Closed Depression<br>Gravel Pit<br>Gravelly Spot<br>Landfill<br>Lava Flow<br>Marsh or swamp<br>Mine or Quarry<br>Miscellaneous Water<br>Perennial Water | Water Feat<br>Transporta | Streams and Canals<br>ation<br>Rails<br>Interstate Highways<br>US Routes<br>Major Roads<br>Local Roads | <ul> <li>Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.</li> <li>This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.</li> <li>Soil Survey Area: Kern County, California, Northwestern Part Survey Area Data: Version 15, Sep 1, 2022</li> <li>Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.</li> <li>Date(s) aerial images were photographed: Mar 12, 2022—Mar 22, 2022</li> </ul> |  |  |  |  |
|                                                                        | Rock Outcrop<br>Saline Spot<br>Sandy Spot<br>Severely Eroded Spot<br>Sinkhole<br>Slide or Slip<br>Sodic Spot                                                                                                    |                          |                                                                                                        | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

## **Map Unit Legend**

| Map Unit Symbol             | Map Unit Name                                             | Acres in AOI | Percent of AOI |
|-----------------------------|-----------------------------------------------------------|--------------|----------------|
| 174                         | Kimberlina fine sandy loam, 0 to 2 percent slopes MLRA 17 | 0.5          | 100.0%         |
| Totals for Area of Interest |                                                           | 0.5          | 100.0%         |

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### Kern County, California, Northwestern Part

### 174—Kimberlina fine sandy loam, 0 to 2 percent slopes MLRA 17

### **Map Unit Setting**

National map unit symbol: 2ss96 Elevation: 120 to 1,160 feet Mean annual precipitation: 4 to 8 inches Mean annual air temperature: 63 to 64 degrees F Frost-free period: 240 to 300 days Farmland classification: Prime farmland if irrigated

### **Map Unit Composition**

*Kimberlina and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

### **Description of Kimberlina**

### Setting

Landform: Alluvial fans Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from igneous and sedimentary rock

### **Typical profile**

*Ap - 0 to 9 inches:* fine sandy loam *C - 9 to 45 inches:* fine sandy loam *2C - 45 to 71 inches:* silt loam

### **Properties and qualities**

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: RareNone
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Maximum salinity: Nonsaline to slightly saline (0.3 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

### Interpretive groups

Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R017XY906CA - Non-Alkali San Joaquin Valley Desert Hydric soil rating: No

### **Minor Components**

### Wasco

Percent of map unit: 7 percent Landform: Alluvial fans Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

### Milham

Percent of map unit: 6 percent Landform: Alluvial fans Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

### Unnamed

Percent of map unit: 2 percent Landform: Flood plains Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

## References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

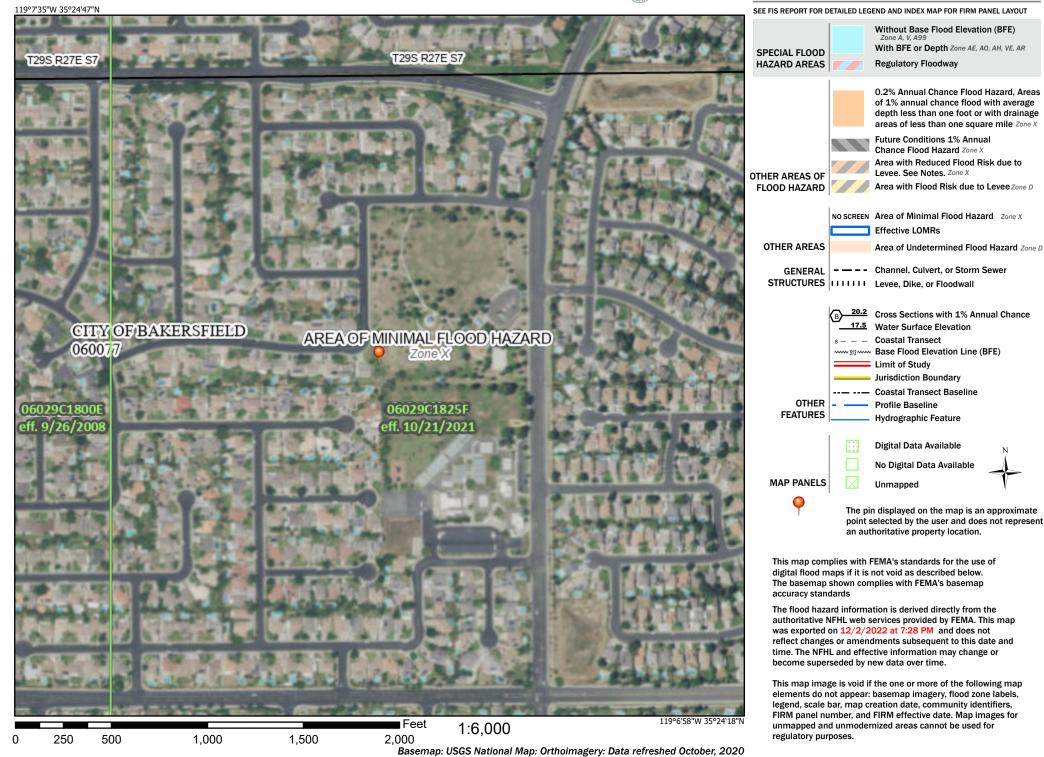
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf


VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

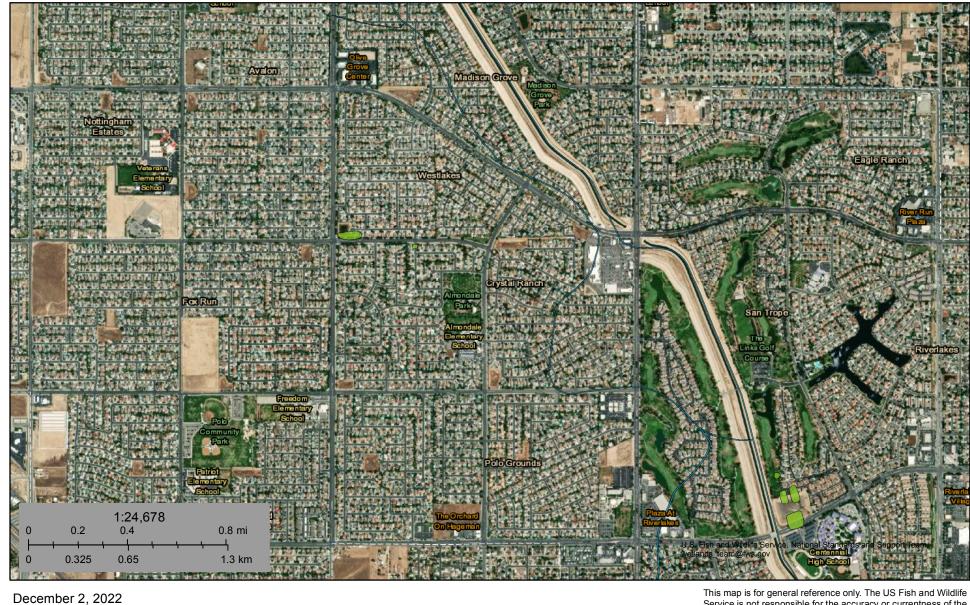
### EXHIBIT H "FLOOD INSURANCE RATE MAP"

## National Flood Hazard Layer FIRMette



### Legend




VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

### EXHIBIT I "U.S. FISH AND WILDLIFE SERVICE – NATIONAL WETLANDS INVENTORY MAP"



### U.S. Fish and Wildlife Service National Wetlands Inventory

## VWC New Municipal Water Well Site



#### Watlanda

### Wetlands

- \_ . . . . . . . .
- Estuarine and Marine Wetland

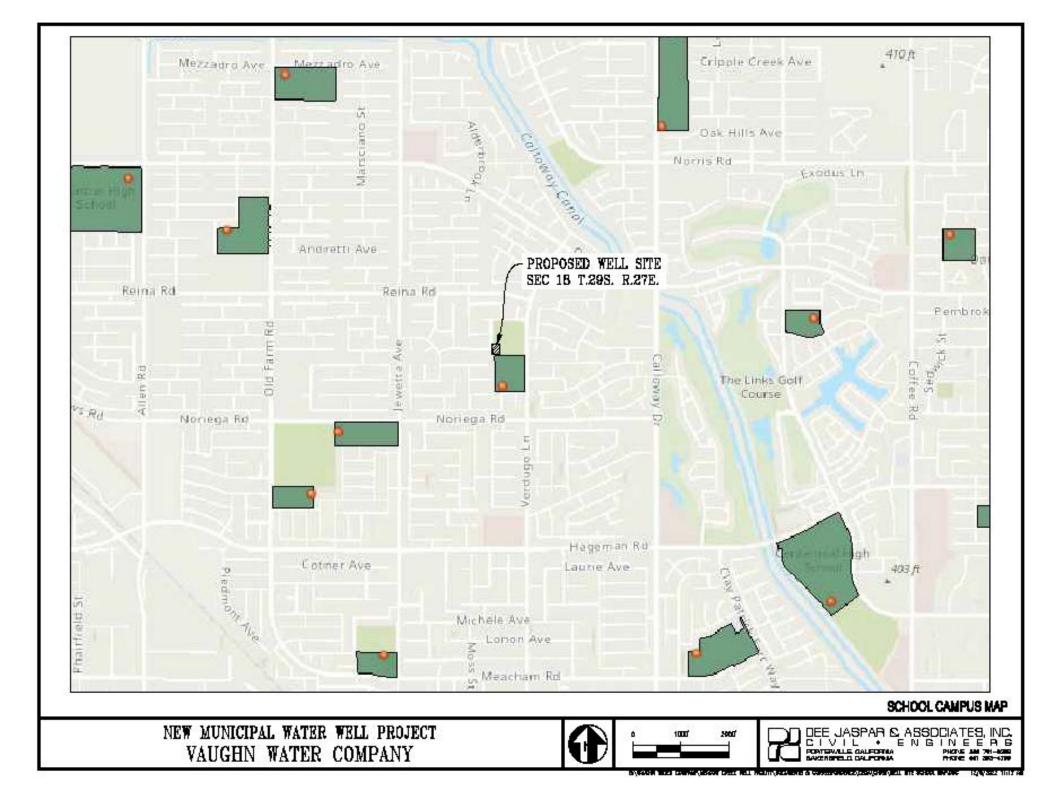
Estuarine and Marine Deepwater

- \_\_\_\_\_
  - Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site. PISHAWAAA


### U.S. Fish and Wildlife Service National Wetlands Inventory

## VWC New Municipal Water Well Site



VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

### EXHIBIT J "MAP OF SCHOOLS IN PROJECT VICINITY"



VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

EXHIBIT K "LIST OF HAZARDOUS MATERIALS SITES PER CALIFORNIA DEPT. OF TOXIC SUBSTANCES CONTROL"

| <u>EPA ID</u> | PROJECT NAME                                                                  | PERMIT EFFECTIVE DATE            | PERMIT EXPIRATION DATE           | PERMIT TYPE  | ADDRESS                            | <u>CITY</u>      | ZIP CODE  | COUNTY          |
|---------------|-------------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------|------------------------------------|------------------|-----------|-----------------|
| CAD093245645  | DUCOMMUN AEROSTRUCTURES                                                       | 10/02/2022 (PC)                  | 10/02/2032 (PC)                  | RCRA         | 4001 EL MIRAGE RD                  | ADELANTO         | 923010000 | SAN BERNARDINO  |
| CAD030584502  | GENERAL ELECTRIC INTERNATIONAL INC                                            | 06/22/2016 (OP)                  | 06/21/2026 (OP)                  | RCRA         | 3601 E LA PALMA AVE                | ANAHEIM          | 928060000 | ORANGE          |
| CAD088504881  | KINSBURSKY BROTHERS SUPPLY INC                                                | 06/15/2011 (OP)                  | 06/14/2021 (OP)                  | RCRA         | 1314 N ANAHEIM BLVD                | ANAHEIM          | 928010000 | ORANGE          |
| CAD077966349  | PACIFIC GAS & ELECTRIC/ DIABLO CANYON                                         | 09/26/2018 (OP)                  | 09/26/2028 (OP)                  | RCRA         | 3890 AVILA BEACH                   | AVILA BEACH      | 934240000 | SAN LUIS OBISPO |
| CAD008302903  | VEOLIA ES TECHNICAL SOLUTIONS LLC AZUSA                                       | 03/31/2011 (OP)                  | 03/31/2021 (OP)                  | RCRA         | 1704 W 1ST ST                      | AZUSA            | 917023203 | LOS ANGELES     |
| CAL000282598  | HERITAGE-CRYSTAL CLEAN LLC                                                    | 07/28/2015 (OP)                  | 07/28/2025 (OP)                  | STATE ONLY   | 1620 E BRUNDAGE LN                 | BAKERSFIELD      | 93307     | KERN            |
| CAD050746775  | SQUARE D COMPANY                                                              | 01/21/2021 (PC)                  | 01/20/2031 (PC)                  | RCRA         | 1060 E 3RD ST                      | BEAUMONT         | 922233020 | RIVERSIDE       |
| CA4890008986  | LAWRENCE BERKELEY NATIONAL LABORATORY                                         | 07/31/2007 (OP)                  | 12/21/2016 (OP)                  | RCRA         | 1 CYCLOTRON RD                     | BERKELEY         | 947200000 | ALAMEDA         |
| CAD980675276  | CLEAN HARBORS BUTTONWILLOW LLC                                                | 04/06/1996 (OP/PC)               | 04/06/2006 (OP/PC)               | RCRA         | 2500 WEST LOKERN RD                | BUTTONWILLOW     | 932060000 | KERN            |
| CA1800090010  | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SANTA<br>SUSANA FIELD LAB       | 05/11/1995 (PC)                  | 05/11/2005 (PC)                  | RCRA         | 5800 WOOLSEY CANYON RD             | CANOGA PARK      | 91304     | LOS ANGELES     |
| CAD980881676  | PHILLIPS 66 CO LOS ANGELES REFINERY CARSON PLANT                              | 08/15/2019 (PC)                  | 08/14/2029 (PC)                  | RCRA         | 1520 E SEPULVEDA BLVD              | CARSON           | 907450000 | LOS ANGELES     |
| CAD077227049  | TESORO CARSON REFINERY                                                        | 11/16/2015 (PC)                  | 11/15/2025 (PC)                  | RCRA         | 1801 E SEPULVEDA BLVD              | CARSON           | 907496210 | LOS ANGELES     |
| CAL000393680  | ASBURY ENVIRONMENTAL SERVICES - CERES DBA WORLD OIL<br>ENVIRONMENTAL SERV     | 06/13/2016 (OP)                  | 06/13/2026 (OP)                  | STANDARDIZED | 1920 MORGAN RD STE AES             | CERES            | 95358     | STANISLAUS      |
| CAL000827844  | WORLD OIL ENVIRONMENTAL SERVICES                                              | 05/18/2021 (OP)                  | 05/17/2031 (OP)                  | STANDARDIZED | 2549 SCOTT AVE                     | CHICO            | 959287188 | BUTTE           |
| CAD980694103  | WORLD OIL ENVIRONMENTAL SERVICES - CHICO II                                   | 01/20/2022 (OP)                  | 01/19/2032 (OP)                  | STANDARDIZED | 1618 W 5TH ST                      | CHICO            | 959284716 | BUTTE           |
| CA2170023152  | NAVAL AIR WEAPONS STATION CHINA LAKE                                          | 07/13/2018 (OP)                  | 07/12/2028 (OP)                  | RCRA         | 1 ADMINISTRATION CIR               | CHINA LAKE       | 935556104 | KERN            |
| CAD066233966  | QUEMETCO INC                                                                  | 09/15/2005 (OP/PC)               | 09/15/2015 (OP/PC)               | RCRA         | 720 S 7TH AVE                      | CITY OF INDUSTRY | 917463124 | LOS ANGELES     |
| CAT080010606  | BIG BLUE HILLS PESTICIDE CONT DISPOSAL                                        | 06/06/2019 (PC)                  | 06/05/2029 (PC)                  | RCRA         | 10 MILES NORTH OF COALINGA         | COALINGA         | 932100000 | FRESNO          |
| CAT080013352  | DEMENNO-KERDOON                                                               | 01/31/2017 (OP)                  | 01/30/2027 (OP)                  | RCRA         | 2000 N ALAMEDA ST                  | COMPTON          | 902220000 | LOS ANGELES     |
| CAD982446874  | SAFETY-KLEEN OF CALIFORNIA INC - DAVIS                                        | 11/06/2012 (OP)                  | 11/06/2022 (OP)                  | STANDARDIZED | 44561 ROAD 30-B                    | DAVIS            | 956160000 | YOLO            |
| CAT080012602  | ADVANCED ENVIRONMENTAL, INC., DBA WORLD OIL<br>ENVIRONMENTAL SERVICES - DIXON | 02/20/2021 (OP)                  | 02/19/2031 (OP)                  | STANDARDIZED | 7300 CHEVRON WAY                   | DIXON            | 956200000 | SOLANO          |
| CA1570024504  | EDWARDS AIR FORCE BASE                                                        | 10/20/2021 (OP)                  | 09/20/2031 (OP)                  | RCRA         | 5 E POPSON AVE                     | EDWARDS          | 935241130 | KERN            |
| CAD008336901  | CHEVRON EL SEGUNDO REFINERY                                                   | 05/17/2007 (OP/PC)               | 05/17/2017 (OP/PC)               | RCRA         | 324 W EL SEGUNDO BLVD              | EL SEGUNDO       | 902450000 | LOS ANGELES     |
| CAT080010283  | WESTSIDE DISPOSAL FACILITY                                                    | 06/12/2017 (PC)                  | 06/11/2027 (PC)                  | RCRA         | 26251 HIGHWAY 33                   | FELLOWS          | 93224     | KERN            |
| CAT080025711  | ADVANCED ENVIRONMENTAL INC DBA WORLD OIL<br>ENVIRONMENTAL SERVICES            | 05/11/2009 (OP), 12/18/2020 (OP) | 10/23/2017 (OP), 12/17/2030 (OP) | STANDARDIZED | 13579 WHITTRAM AVE                 | FONTANA          | 923350000 | SAN BERNARDINO  |
| CAD008274938  | KAISER VENTURES INC                                                           | 04/08/2016 (PC)                  | 04/07/2026 (PC)                  | RCRA         | 9400 CHERRY AVE                    | FONTANA          | 92335     | SAN BERNARDINO  |
| CAL930256136  | WORLD OIL ENVIRONMENTAL SERVICES - FORTUNA                                    | 02/10/2022 (OP)                  | 01/11/2032 (OP)                  | STANDARDIZED | 200 DINSMORE DR                    | FORTUNA          | 955400000 | HUMBOLDT        |
| CAD982446882  | SAFETY-KLEEN OF CALIFORNIA INC - FRESNO                                       | 01/22/2022 (OP), 11/24/2008 (OP) | 11/23/2018 (OP), 12/23/2031 (OP) | STANDARDIZED | 4139 N VALENTINE AVE               | FRESNO           | 937224147 | FRESNO          |
| CAD097465132  | TP INDUSTRIAL INC                                                             | 11/11/2010 (PC)                  | 11/10/2020 (PC)                  | RCRA         | 525 E ALONDRA BLVD                 | GARDENA          | 902480000 | LOS ANGELES     |
| CAD982411993  | AERC ACQUISITION CORP DBA AERC RECYCLING SOLUTIONS, A CLEAN EARTH COMPANY     | 11/23/2020 (OP)                  | 11/23/2030 (OP)                  | STANDARDIZED | 30677 HUNTWOOD AVE                 | HAYWARD          | 94544     | ALAMEDA         |
| CAD990665432  | JOHN SMITH ROAD LANDFILL                                                      | 08/30/2017 (PC)                  | 08/29/2027 (PC)                  | RCRA         | 2650 JOHN SMITH RD                 | HOLLISTER        | 950239711 | SAN BENITO      |
| CAD009220898  | PACIFIC SCIENTIFIC ENERGETIC MATERIALS CO                                     | 08/09/2021 (OP)                  | 08/09/2031 (OP)                  | RCRA         | 3601 UNION RD                      | HOLLISTER        | 950230000 | SAN BENITO      |
| CAD008364432  | RHO-CHEM LLC                                                                  | 08/28/2008 (OP)                  | 08/27/2018 (OP)                  | RCRA         | 425 ISIS AVE                       | INGLEWOOD        | 903010000 | LOS ANGELES     |
| CAL000330453  | AGRITEC INT DBA CLEANTECH ENVIRONMENTAL INC                                   | 02/02/2015 (OP)                  | 02/01/2025 (OP)                  | STATE ONLY   | 5820 MARTIN RD                     | IRWINDALE        | 91706     | LOS ANGELES     |
| CAT000646117  | CHEMICAL WASTE MANAGEMENT INC KETTLEMAN                                       | 06/16/2003 (OP/PC)               | 06/13/2013 (OP/PC)               | RCRA         | KETTLEMAN HILLS LDFL HIGHWAY<br>41 | KETTLEMAN CITY   | 932100000 | KINGS           |
| CA2890012584  | LAWRENCE LIVERMORE NATIONAL LABORATORY                                        | 10/31/2022 (OP), 11/19/1999 (OP) | 10/31/2032 (OP), 11/19/2009 (OP) | RCRA         | 7000 EAST AVE                      | LIVERMORE        | 945500000 | ALAMEDA         |
| CA2890012923  | SANDIA NATIONAL LABORATORIES                                                  | 10/25/2018 (OP)                  | 10/25/2028 (OP)                  | RCRA         | 7011 EAST AVE                      | LIVERMORE        | 945500000 | ALAMEDA         |
| CAD028409019  | CROSBY & OVERTON                                                              | 08/22/2014 (OP)                  | 08/21/2024 (OP)                  | RCRA         | 1630 W 17TH ST                     | LONG BEACH       | 908130000 | LOS ANGELES     |
| CAL000098454  | A & A FEROS NON FEROS METAL                                                   | 05/23/2017 (OP)                  | 05/23/2027 (OP)                  | STANDARDIZED | 640 S HILL ST #743                 | LOS ANGELES      | 900140000 | LOS ANGELES     |

|                  | EMERALD TRANSFORMER LOS ANGELES, LLC                                       |                                                      | 01/26/2021 (OP), 10/09/2032 (OP)                     | RCRA             | 5756 ALBA ST                 | LOS ANGELES    |           | LOS ANGELES    |
|------------------|----------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------|------------------------------|----------------|-----------|----------------|
|                  | INDUSTRIAL SERVICE OIL CO INC                                              | . ,                                                  | 06/24/2018 (OP)                                      | RCRA             | 1700 S SOTO ST               | LOS ANGELES    |           | LOS ANGELES    |
|                  | PACIFIC RESOURCE RECOVERY SERVICES INC                                     | 06/27/2012 (OP)                                      | 06/26/2022 (OP)                                      | RCRA             | 3150 E PICO BLVD             | LOS ANGELES    |           | LOS ANGELES    |
|                  | SAFETY-KLEEN SYSTEMS INC                                                   | 10/24/2020 (OP)                                      | 10/24/2030 (OP)                                      | RCRA             | 2918 WORTHEN AVE             | LOS ANGELES    |           | LOS ANGELES    |
|                  | SOUTHERN CALIFORNIA GAS CO                                                 | 06/30/2018 (OP)                                      | 06/30/2028 (OP)                                      | RCRA             | 2424 E OLYMPIC BLVD          | LOS ANGELES    | 900210000 | LOS ANGELES    |
|                  | US ECOLOGY VERNON INC                                                      | 07/23/2017 (OP)                                      | 07/22/2027 (OP)                                      | RCRA             | 5375 S BOYLE AVE             | LOS ANGELES    |           | LOS ANGELES    |
|                  | ACME FILL CORPORATION                                                      | 06/26/2015 (PC)                                      | 06/25/2025 (PC)                                      | RCRA             | 950 WATERBIRD WAY            | MARTINEZ       |           | CONTRA COSTA   |
| CAD009164021     | MARTINEZ REFINING COMPANY LLC                                              | 05/21/2008 (OP)                                      | 05/20/2018 (OP)                                      | RCRA             | 3485 PACHECO BLVD            | MARTINEZ       |           | CONTRA COSTA   |
| CAD000072751     | TESORO MARTINEZ REFINERY                                                   | 12/19/2021 (PC)                                      | 12/18/2031 (PC)                                      | RCRA             | 150 SOLANO WAY               | MARTINEZ       | 94553     | CONTRA COSTA   |
| CAD074644659     | HONEYWELL INTERNATIONAL INC FORMER BARON-BLAKESLEE                         | 11/22/2020 (PC)                                      | 11/21/2030 (PC)                                      | RCRA             | 8333 ENTERPRISE DR           | NEWARK         | 945600000 | ALAMEDA        |
| CAD980887418     | SAFETY-KLEEN OF CALIFORNIA INC                                             | 09/03/2021 (OP)                                      | 09/02/2031 (OP)                                      | RCRA             | 6880 SMITH AVE               | NEWARK         | 945600000 | ALAMEDA        |
| CAD008383127     | TFX AVIATION INC                                                           | 07/23/2016 (PC)                                      | 07/23/2026 (PC)                                      | RCRA             | 3085 OLD CONEJO RD           | NEWBURY PARK   | 913200000 | VENTURA        |
| CAD009151671     | CHEMOURS OAKLEY                                                            | 10/26/2022 (PC)                                      | 10/26/2032 (PC)                                      | RCRA             | 6000 BRIDGEHEAD RD           | OAKLEY         | 945612940 | CONTRA COSTA   |
| CAR000156125     | LIGHTING RESOURCES LLC                                                     |                                                      |                                                      | STANDARDIZED     | 805 FRANCIS ST               | ONTARIO        | 917610000 | SAN BERNARDINO |
| CAL000102751     | WORLD OIL - SAN JOAQUIN LLC                                                | 01/10/2020 (OP)                                      | 01/10/2030 (OP)                                      | STANDARDIZED     | 14287 E MANNING AVE          | PARLIER        | 936489744 | FRESNO         |
| CAD059277137     | CENTRAL WIRE INC                                                           | 06/24/2019 (PC)                                      | 06/23/2029 (PC)                                      | RCRA             | 2500 SOUTH A ST              | PERRIS         | 925709317 | RIVERSIDE      |
| CAT000625137     | SOUTHERN CALIFORNIA GAS CO                                                 | 08/01/2019 (OP)                                      | 07/31/2029 (OP)                                      | RCRA             | 8101 S ROSEMEAD BLVD         | PICO RIVERA    | 90660     | LOS ANGELES    |
| CAD076528678     | CORTEVA AGRISCIENCE - PITTSBURG OPERATIONS                                 | 12/27/2019 (PC), 04/28/2003 (OP),<br>10/31/2018 (OP) | 12/26/2029 (PC), 04/27/2013 (OP),<br>10/30/2028 (OP) | RCRA             | 901 LOVERIDGE RD             | PITTSBURG      | 945650000 | CONTRA COSTA   |
| CAD009150194     | USS-POSCO INDUSTRIES                                                       | 04/21/2014 (PC)                                      | 04/21/2024 (PC)                                      | RCRA, STATE ONLY | 900 LOVERIDGE RD             | PITTSBURG      | 945650000 | CONTRA COSTA   |
|                  | AEROJET ROCKETDYNE INC                                                     | 05/27/2021 (PC)                                      | 05/27/2031 (PC)                                      | RCRA             | US HWY 50 & AEROJET RD       | RANCHO CORDOVA | 958136000 | SACRAMENTO     |
| ('ALL08')/130806 | CLEAN HARBORS ENVIRONMENTAL SERVICES INC PORT OF<br>REDWOOD CITY           | 07/29/2016 (OP)                                      | 07/29/2026 (OP)                                      | STANDARDIZED     | 695 SEAPORT BLVD             | REDWOOD CITY   | 940630000 | SAN MATEO      |
|                  | HAZMAT TSDF INC FORMER FILTER RECYCLING SERVICES INC                       |                                                      | 08/12/2032 (OP)                                      | STANDARDIZED     | 180 W MONTE AVE              | RIALTO         |           | SAN BERNARDINO |
| CAD043237486     | CHEVRON CHEMICAL CO                                                        | 07/23/2010 (OP)                                      | 07/23/2020 (OP)                                      | RCRA             | 940 HENSLEY ST               | RICHMOND       | 948012106 | CONTRA COSTA   |
| CAD009114919     | CHEVRON USA INC RICHMOND REFINERY                                          | 06/23/2017 (PC), 10/25/2020 (OP)                     | 06/23/2027 (PC), 10/24/2030 (OP)                     | RCRA             | 841 CHEVRON WAY              | RICHMOND       | 94801     | CONTRA COSTA   |
| CAT080014079     | VEOLIA ES TECHNICAL SOLUTIONS LLC RICHMOND                                 | 10/08/2014 (OP)                                      | 10/08/2024 (OP)                                      | RCRA             | 1125 HENSLEY ST              | RICHMOND       | 948012118 | CONTRA COSTA   |
| CAD041844002     | WEST COUNTY LANDFILL INC                                                   | 05/26/2022 (PC)                                      | 05/26/2032 (PC)                                      | RCRA             | PARR BLVD & GARDEN TRACT RD  | RICHMOND       | 948010000 | CONTRA COSTA   |
| CAL000190816     | CALIFORNIA OIL TRANSFER LLC                                                | 12/12/2017 (OP)                                      | 12/11/2027 (OP)                                      | STANDARDIZED     | 5300 CLAUS RD                | RIVERBANK      | 953670000 | STANISLAUS     |
| CAD009108705     | PHILLIPS 66 COMPANY - SAN FRANCISCO REFINERY                               | 01/09/2017 (PC), 02/21/2012 (PC)                     | 01/08/2027 (PC), 02/20/2022 (PC)                     | RCRA             | 1380 SAN PABLO AVE           | RODEO          | 945720000 | CONTRA COSTA   |
| CA0000084517     | SAFETY-KLEEN SYSTEMS,INC.                                                  | 07/30/2018 (OP)                                      | 07/30/2028 (OP)                                      | RCRA             | 6000 88TH ST                 | SACRAMENTO     | 958280000 | SACRAMENTO     |
|                  | SOUTHERN CALIFORNIA EDISON SAN ONOFRE PLANT                                | 05/23/2016 (OP)                                      | 05/23/2026 (OP)                                      | RCRA             | 5000 OLD PACIFIC HWY         | SAN CLEMENTE   | 92058     | ORANGE         |
|                  | NAVAL AIR STATION NORTH ISLAND (NASNI) HAZARDOUS WASTE<br>FACILITY COMPLEX | 03/26/2022 (OP)                                      | 03/26/2032 (OP)                                      | RCRA             | BUILDING 1606                | SAN DIEGO      | 921350000 | SAN DIEGO      |
| CAR000019430     | NAVAL BASE CORONADO MIXED WASTE STORAGE FACILITY                           | 02/03/2015 (OP)                                      | 02/02/2025 (OP)                                      | RCRA             | NASNI BLDG 74                | SAN DIEGO      | 921350000 | SAN DIEGO      |
| CA6170024289     | NAVAL STATION SAN DIEGO                                                    | 07/30/2018 (OP)                                      | 07/29/2028 (OP)                                      | RCRA             | BLDG 3458 NAVAL STATION      | SAN DIEGO      | 921360000 | SAN DIEGO      |
| CAD980636682     | SAN DIEGO GAS & ELECTRIC COMPANY                                           | 07/03/2012 (OP)                                      | 07/03/2022 (OP)                                      | STANDARDIZED     | 5488 OVERLAND AVE            | SAN DIEGO      | 921231205 | SAN DIEGO      |
| CAD981168107     | SAN DIEGO GAS & ELECTRIC MIRAMAR                                           | 06/20/2018 (OP)                                      | 06/19/2028 (OP)                                      | RCRA             | 6875 CONSOLIDATED WAY SD1373 | SAN DIEGO      | 921210000 | SAN DIEGO      |
| CAD008314908     | SOLAR TURBINES INC                                                         | 05/06/2016 (PC)                                      | 05/06/2026 (PC)                                      | RCRA             | 2200 PACIFIC HWY             | SAN DIEGO      | 921011745 | SAN DIEGO      |
| CAD059494310     | CLEAN HARBORS SAN JOSE LLC                                                 | 06/18/2021 (OP)                                      | 06/17/2031 (OP)                                      | RCRA             | 1021 BERRYESSA RD            | SAN JOSE       | 951330000 | SANTA CLARA    |
| CAD069124717     | GLENCORE RECYCLING LLC                                                     | 05/06/2012 (OP)                                      | 05/06/2022 (OP)                                      | STANDARDIZED     | 1695 MONTEREY HWY            | SAN JOSE       | 951120000 | SANTA CLARA    |
|                  | RAYTHEON TECHNOLOGIES CORPORATION, PRATT & WHITNEY<br>DIVISION             | 08/02/2018 (PC)                                      | 08/02/2028 (PC)                                      | RCRA             | 600 METCALF RD               | SAN JOSE       | 951380000 | SANTA CLARA    |

| CAR000128793 | WESTERN DIGITAL TECHNOLOGIES INC                            | 05/24/2022 (OP)                                      | 05/25/2032 (OP)                                      | RCRA         | 5601 GREAT OAKS PKWY     | SAN JOSE         | 951191003 | SANTA CLARA   |
|--------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------|--------------------------|------------------|-----------|---------------|
| CAD980888598 | WIT SALES AND REFINING                                      | 03/24/2016 (OP)                                      | 03/23/2026 (OP)                                      | STANDARDIZED | 538 PHELAN AVE           | SAN JOSE         | 951120000 | SANTA CLARA   |
| CAT000613976 | SAFETY-KLEEN SYSTEMS INC                                    | 07/27/2019 (OP)                                      | 07/26/2029 (OP)                                      | RCRA         | 2120 S YALE ST           | SANTA ANA        | 927040000 | ORANGE        |
| CAD982052797 | J&B REFINING DBA J&B ENTERPRISES                            | 05/07/2015 (OP)                                      | 05/06/2025 (OP)                                      | STANDARDIZED | 1650 RUSSELL AVE         | SANTA CLARA      | 950540000 | SANTA CLARA   |
| CAD088838222 | BAYSIDE OIL II INC                                          | 09/15/2015 (OP)                                      | 09/15/2025 (OP)                                      | STANDARDIZED | 210 ENCINAL ST           | SANTA CRUZ       | 950600000 | SANTA CRUZ    |
| CAD060398229 | HERAEUS PRECIOUS METALS NORTH AMERICA LLC                   | 10/31/2011 (OP)                                      | 10/31/2021 (OP)                                      | STANDARDIZED | 15524 CARMENITA RD       | SANTA FE SPRINGS | 906700000 | LOS ANGELES   |
| CAD008488025 | PHIBRO-TECH INC                                             | 07/29/1991 (OP)                                      | 07/29/1996 (OP)                                      | RCRA         | 8851 DICE RD             | SANTA FE SPRINGS | 906702515 | LOS ANGELES   |
| CAD982446858 | SAFETY KLEEN OF CALIFORNIA SANTA MARIA                      | 02/12/2021 (OP)                                      | 02/12/2031 (OP)                                      | STANDARDIZED | 745 W BETTERAVIA RD      | SANTA MARIA      | 934551247 | SANTA BARBARA |
| CAD093365435 | THE BOEING CO-CANOGA PARK                                   | 05/11/1995 (PC)                                      | 05/11/2005 (PC)                                      | RCRA         | WOOLSEY CANYON RD        | SIMI VALLEY      | 930630000 | VENTURA       |
| CAD990794133 | FORWARD LANDFILL                                            | 07/18/2016 (PC)                                      | 07/18/2026 (PC)                                      | RCRA         | 9999 S AUSTIN RD         | STOCKTON         | 95363     | SAN JOAQUIN   |
| CAD981429715 | KEARNEY-KPF                                                 | 09/21/2017 (PC)                                      | 09/21/2027 (PC)                                      | RCRA         | 1624 E ALPINE AVE        | STOCKTON         | 952052525 | SAN JOAQUIN   |
| CAD030398622 | FORMER INTERNATIONAL LIGHT METALS FACILITY                  | 04/08/2013 (PC)                                      | 04/07/2023 (PC)                                      | RCRA         | 19200 S WESTERN AVE      | TORRANCE         | 905011109 | LOS ANGELES   |
| CA2890090002 | LAWRENCE LIVERMORE NATIONAL LABORATORY - SITE 300           | 04/27/2017 (PC), 08/07/2017 (OP),<br>11/08/1997 (OP) | 04/27/2027 (PC), 08/07/2027 (OP),<br>11/06/2007 (OP) | RCRA         | CORRAL HOLLOW RD         | TRACY            | 95376     | SAN JOAQUIN   |
| CA5570024575 | TRAVIS AIR FORCE BASE                                       | 12/25/2019 (OP)                                      | 12/25/2029 (OP)                                      | RCRA         | 60 CES/CEA               | TRAVIS AFB       | 945350000 | SOLANO        |
| CA4170024414 | CALIFORNIA RESOURCES ELK HILLS LLC                          | 06/21/2019 (PC)                                      | 06/20/2029 (PC)                                      | STANDARDIZED | 28590 HIGHWAY 119        | TUPMAN           | 932760000 | KERN          |
| CA9570025149 | DEPT OF AIR FORCE VANDENBERG AFB                            | 10/08/2020 (OP)                                      | 10/07/2030 (OP)                                      | RCRA         | VANDENBERG AFB           | VANDENBERG AFB   | 934360000 | SANTA BARBARA |
| CAT080033681 | WORLD OIL TERMINALS - VERNON                                | 10/01/2012 (OP)                                      | 09/30/2022 (OP)                                      | RCRA         | 3650 E 26TH ST           | VERNON           | 90058     | LOS ANGELES   |
| CAD980813950 | CRANE'S WASTE OIL INC                                       | 09/30/2009 (OP)                                      | 09/29/2019 (OP)                                      | STANDARDIZED | 16095 HIGHWAY 178        | WELDON           | 932839741 | KERN          |
| CAD044003556 | RAMOS ENVIRONMENTAL SERVICES                                | 04/20/2016 (OP)                                      | 04/19/2026 (OP)                                      | STANDARDIZED | 1515 S RIVER RD          | WEST SACRAMENTO  | 956910000 | YOLO          |
| CAD000633164 | CLEAN HARBORS WESTMORLAND LLC                               | 05/02/1994 (OP/PC)                                   | 05/02/2004 (OP/PC)                                   | RCRA         | 5295 SOUTH GARVEY ROAD   | WESTMORLAND      | 922810158 | IMPERIAL      |
| CAD044429835 | CLEAN HARBORS WILMINGTON LLC                                | 09/15/2011 (OP)                                      | 09/15/2021 (OP)                                      | RCRA         | 1737 E DENNI ST          | WILMINGTON       | 907440000 | LOS ANGELES   |
| CAD008237679 | PHILLIPS 66 CO LOS ANGELES REFINERY - WILMINGTON PLANT      | 10/31/2021 (PC)                                      | 10/30/2031 (PC)                                      | RCRA         | 1660 W ANAHEIM ST        | WILMINGTON       | 907440000 | LOS ANGELES   |
| CAD041520644 | TESORO REFINING & MARKETING COMPANY-LOS ANGELES<br>REFINERY | 12/21/2022 (PC)                                      | 12/22/2032 (PC)                                      | RCRA         | 2101 E PACIFIC COAST HWY | WILMINGTON       | 907442914 | LOS ANGELES   |

VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

EXHIBIT L "COMMENT LETTERS AND RESPONSES"





## State Water Resources Control Board

August 11, 2023

North of the River Recreation and Park District Attn: Ms. Steph Thisius-Sanders 3825 Riverlakes Drive Bakersfield, CA 93312

NORTH OF THE RIVER RECREATION AND PARK DISTRICT (NRRPD), INITIAL STUDY/MITIGATED NEGATIVE DECLARATION (IS/MND) FOR THE MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY PROJECT (PROJECT); STATE CLEARINGHOUSE #2023070417

Dear Ms. Steph Thisius-Sanders:

Thank you for the opportunity to review the IS/MND for the proposed Project. The State Water Resources Control Board, Division of Drinking Water (State Water Board, DDW) is responsible for issuing water supply permits pursuant to the Safe Drinking Water Act. The Project is within the jurisdiction of the State Water Board, DDW's Visalia District. DDW Visalia District issues domestic water supply permit amendments to the public water systems serviced with a new or modified source of domestic water supply or new domestic water system components pursuant to Waterworks Standards (Title 22 California Code of Regulations (CCR) chapter 16 et. seq.). A public water system requires a water supply permit amendment for changes to a water supply source, storage, or treatment and for the operation of new water system components- as specified in the Waterworks Standards. Vaughn Water Company will need to apply for a water supply permit amendment for this Project.

The State Water Board, DDW, as a responsible agency under California Environmental Quality Act (CEQA), has the following comments on the District's IS/MND:

- The IS/MND states that Vaughn Water Company as the lead agency (PDF page 4 and 8). Vaughn Water Company is not a "public agency" and cannot therefore be the CEQA lead agency. Please update the document to reflect the public agency that has the principal responsibility for carrying out or approving the Project (See Public Resources Code section 21067).
- The Project appears to be within the Almondale Park, in NRRPD's jurisdiction, according to the project location map (Figure 1, PDF page 19 & 78). However, the IS/MND states the "The Project site will be constructed on existing property owned by Vaughn Water Company" (PDF page 56) and "The project is adjacent to the Almondale Park and has a private easement through the southern portion

E. JOAQUIN ESQUIVEL, CHAIR | EILEEN SOBECK, EXECUTIVE DIRECTOR

1001 | Street, Sacramento, CA 95814 | Mailing Address: P.O. Box 100, Sacramento, CA 95812-0100 | www.waterboards.ca.gov

of the park" (PDF page 65). If the project site and access are on private land, what is the NRRPD's discretion over the project? The document does not state what the NRRPD's discretionary approval is, nor is it described in PDF page 14 under H. Public Agency Approvals. Please explain the NRRPD's discretionary approval for the Project. If the NRRPD doesn't have a discretionary approval, please coordinate with one of the agencies listed on PDF page 14 that does have discretionary approval over the Project for them to be the lead agency.

- PDF page 44 says, "A water storage tank and granulated activated carbon treatment tanks will be located within the site as well." The Project site design on PDF page 221 also includes the treatment tanks. This treatment is not included in the project description on PDF page 4-6 or PDF page 80 that describes a well, an ozone treatment facility for taste and odor, and a chlorination system for disinfection. Please explain if GAC treatment will also be needed for the Project, and if so, why.
- Please discuss potential operational impacts of the well, ozone treatment system, and the possible GAC treatment system.
  - Please state how often the site will need to be visited by Vaughn Water Company employees to service the system.
  - If the GAC treatment may be installed, please indicate if the spent resin will be hazardous, how often it will be replaced, and how it will be disposed of.
  - The IS/MND states, "There are no emissions into the air as part of the facility operation as there will be no gas or diesel driven equipment as part of the project once construction is complete" (PDF page 27). As part of the Project description, please indicate if there will be a backup generator on-site for the well. If so, be sure to clarify how often it will need to be maintained to keep it in working order, as part of the operation of the water system and include information on the generator in the air and noise section.
- The Project falls within the Kern County Subbasin of the San Joaquin Valley-Kern County Basin (5-022.14), a high priority and critically-overdrafted basin. Kern River is the Groundwater Sustainability Agency. No Kern River sustainability plan for the San Joaquin Valley-Kern County Basin is approved under the Sustainable Groundwater Management Act. The construction and operation of the well will use water to provide municipal water supply to residences in the northwest part of Bakersfield (PDF page 62).
  - For Mitigation Measure HYD-1, please indicate at what level groundwater lowering will be considered excessive and what actions will be taken if it is determined that wells are excessively lowering groundwater levels in the area.
  - The IS/MND indicated the new well will be completed at a depth that is deeper than most wells in the area which will limit the impacts to shallower wells (PDF page 53). Please explain how this conclusion was reached. Is there a deeper aquifer disconnected from the shallower aquifer? If not, are nearby wells close enough to be affected by the cone

of depression? Were any pump tests performed to determine effects on nearby wells?

- The IS/MND did not explain if the Project has sufficient water supplies available to be used by the well during normal, dry, and multiple dry years. Please indicate the increase in water use needed by the water system to meet demand and if there is enough water in the aquifer for the Project during normal, dry, and multiple dry years.
- The IS/MND indicates the "Project is not anticipated to use or substantially deplete groundwater supplies or conflict with any future adopted groundwater management plan" (PDF page 55). Please indicate how much water can be extracted without having significant impacts and how much will be used. Please explain how the water will be recharged and/or the basin will not be significantly impacted. If it will be significantly impacted, provide mitigation measures to reduce the impacts to less than significant.
- Please also discuss how it was determined the Project would not result in cumulative effects on the groundwater basin.
- The IS/MND states "The Project will not violate any water guality standards nor • will it involve waste discharge" (PDF page 52). The well will be required to have a water line to discharge to waste. The Project may also have to discharge backwash water if there is GAC treatment. Please explain where this well waste line and backwash line (as needed) will discharge and what state, regional, individual permit, or waiver will be obtained. If the Project will be discharging to the storm drain and/or surface water a Statewide General NPDES permit 2014-0194-Division of Water Quality (DWQ) for Drinking Water Discharges may be applicable. For questions about the Statewide General NPDES permit please contact Renan Jauregui of the DWQ at (916) 341-5505 or Renan.Jauregui@waterboards.ca.gov. If the discharge line will be discharging to the ground the Statewide Water Quality Order 2003-0003-DWQ, Statewide General Waste Discharge Requirements for Discharges to Land with a Low Threat to Water Quality may be applicable. For guestions on regional waste discharge permits, individual waste discharge permits, and/or waivers please contact Alexander Mushegan of the Central Valley Regional Water Quality Control Board (CVRWQCB), Fresno District at (559) 488-4397 or Alexander.Mushegan@waterboards.ca.gov.

If NRRPD is taking a discretionary action on the Project, once the MND is adopted, please forward the following items in support of Vaughn Water Company's permit application to the State Water Board, DDW Visalia District Office at DWPDIST12@waterboards.ca.gov:

- Copy of the draft and final MND with any comment letters received and the lead agency responses as appropriate.
- Copy of the Resolution or Board Minutes adopting the MND, and
- Copy of the date stamped Notice of Determination filed at the Kern County Clerk's Office and the Governor's Office of Planning and Research, State Clearinghouse.

Please contact Lori Schmitz of the State Water Board at (916) 449-5285 or Lori.Schmitz@waterboards.ca.gov, if you have any questions regarding this comment letter.

Sincerely,

Lori Schmitz Environmental Scientist Division of Financial Assistance Special Project Review Unit 1001 I Street, 16<sup>th</sup> floor Sacramento, CA 95814

Cc:

Office of Planning and Research, State Clearinghouse

Adam Forbes District Engineer State Water Board, DDW Visalia District

Vanessa Andrade Water Resource Control Engineer State Board, DDW Visalia District

Renan Jauregui Water Resources Control Engineer State Water Board, DWQ

Alexander Mushegan Senior Water Resources Control Engineer CVRWQCB, Fresno District

Curtis Skaggs Company Engineer Dee Jaspar & Associates, Inc.



October 9, 2023

Lori Schmitz, Environmental Scientist State Water Resources Control Board Division of Financial Assistance Special Project Review Unit 1001 I Street, 16<sup>th</sup> Floor Sacramento, CA 95814

### Subject: Vaughn Water Company Meadow Creek Well Water Supply and Treatment Facility Project State Clearinghouse #2023070417

Dear Ms. Schmitz,

Your comments for the above referenced project dated August 11, 2023 were received and have been reviewed. Below are responses to each comment:

- 1. The statement in the IS/MND referencing Vaughn Water Company as the lead agency is a mistake. The document will be updated in the Final Draft to reflect the North of the River Recreation and Park District (NRRPD) as the Lead Agency.
- 2. Almondale Park is owned by and under the jurisdiction of NRRPD. NRRPD had discretion over this project when they elected to grant the well site property to Vaughn Water Company therefore NRRPD seemed the most appropriate for acting as the Lead Agency, however this action was taken prior to this environmental document.

The well site will also require pipeline easements from NRRPD in order for the well site to be connected to the existing Vaughn Water Company water system and this discretionary approval will be subject to NRRPD.

3. GAC treatment is not expected to be needed; however, the water company is being proactive in making sure the design layout has room and can accommodate treatment vessels in the event that it does become necessary once the well is drilled and completed.

GAC treatment was not originally included in the project description as it is considered future and not necessary at this time. If GAC treatment becomes necessary in the future, then a separate environmental document will be prepared.

4. The potential operational impacts of the project will be added to the project description.

VWC/Meadow Creek Well/Notification Letter

- a. The well site will be routinely visited by a Vaughn Water Company operator typically once per day to check on the operation and inspect for any issues along with the preparation of a daily report. Routine maintenance operations will include:
  - Well Lubrication Check daily

.

- Chlorine Tank Level Check daily
- Chlorine Residual Check daily
- Water Production Reading Check daily
- Check dew point monthly
- Booster Pump check monthly
- Well water level measurements monthly
- Dryer Unit oil vapor filter replacement quarterly
- Hydrocarbon filter replacements on dryer units, compressor units, fisher valves quarterly
- Air Conditioning service quarterly
- Site Cleanup quarterly
- Oil changes for electric motors semi-annual
- b. A back-up emergency generator will not be installed as part of this project.
- 5. a. Vaughn Water Company has two existing water wells within approximately 2,000-ft and 4,600-ft of the Meadow Creek well location. A review of groundwater levels for these Vaughn Water Company wells show that the static water levels have historically ranged (1997 2023) from approximately 147-feet below ground surface to 321-feet below ground surface (bgs). The current static water level in the area for July 2023 is approximately 269 feet bgs.

The KRGSA GSP notes minimum thresholds of 20-feet below the historic low water level for greater than three months. This would equate to static water levels of approximately 341-feet bgs for Vaughn Water Company. Should the static water level drop below 341-ft bgs for greater than three months, then the Water Company will inform the overlying water districts so that they can determine next steps to ensure the groundwater basin is balanced and being recharged appropriately.

b. Vaughn Water Company typically completes their municipal wells approximately 1,200-feet to 1,500-feet bgs. This is much deeper than the 600-ft to 800-ft depth that wells in this area are routinely completed too. The soil formation in this area is composed of silts, sands, and clays and is considered an unconfined aquifer, however there are significant clay layers typically around 350-ft, 400-ft, 500-ft 650-ft, and 800-ft. This deeper aquifer, below 800-ft, often encounters a color change and has reduced dissolved oxygen concentrations resulting in taste and odor issues. Pumping from this deeper aquifer results in less impact on the shallower aquifer and any nearby wells, but requires the water company to treat with ozone.

VWC/Meadow Creek Well/Hydraulic Analysis

The nearest municipal water well is an existing Vaughn Water Company well and it is approximately 2,000-ft away. A well spacing of approximately 1,300-ft to 1,500-ft generally mitigates any effects from the cone of depression.

- c. The increase in water demand on the system is a result of residential and commercial growth in the Rosedale area of NW Bakersfield. The increase in water demand is a peak demand increase of approximately 2,500 gpm or approximately 1,000 ac-ft per year. The normal demand is 4,162 MG or approximately 12,775 ac-ft per year. The normal year supply is approximately 28,080 ac-ft per year. The annual supply for a single dry year is not expected to change and the available supply remains approximately 28,080 ac-ft per year. Based on the multiple dry year period from 2013 through 2017, it is expected that there might be a 20% decline in water supply availability. This equates to an available supply of approximately 22,464 ac-ft per year which exceeds the normal demand of 12,775 ac-ft per year.
- The amount of water anticipated to be extracted from the Meadow Creek well on d. an annual basis is approximately 1,000 ac-ft. Vaughn Water Company overlies two local water agencies: the Kern County Water Agency - Improvement District No. 4 (ID4) and Rosedale Rio Bravo Water Storage District (RRBWSD). Vaughn Water Company supports the efforts of both agencies to achieve a groundwater balance in the Company's service area and recognizes that Company-served landowners within both agencies have contributed significant amounts of money to aid in the achievements made thus far and will continue to contribute towards those efforts. The Company pays tolls on the water pumped out of the ground within the ID4 service boundary to the Kern County Water Agency. These charges help pay for the operation of ID4 projects including operation and maintenance of the Cross Valley Canal and recharge and recovery operations. Furthermore, the Water Company has a Memorandum of Understanding with the underlying water district - Rosedale Rio Bravo Water Storage District. RRBWSD has endeavored to create a groundwater balance within the RRBWSD District through importation of water for recharge and in-lieu water supply programs and through cooperative programs with other agencies. Studies by the District indicate that a groundwater balance is being achieved. Therefore, as a result of the recharge operations by both local water agencies, the project will not significantly impact the basin. The Water Company participates in financing these District programs through property taxes paid by Company shareholders and by fees levied against each acre-foot of water pumped by the company within ID4.
- e. The Project will not result in cumulative effects on the groundwater basin for the reasons noted above in Item d. The Water Company shareholders (customers) pay property taxes and pump taxes to the underlying local water agencies: Kern County Water Agency Improvement District No. 4 and Rosedale Rio Bravo Water Storage District. Those water districts implement groundwater

VWC/Meadow Creek Well/Hydraulic Analysis

replenishment programs and recharge operations to store water in the underlying groundwater basin when excess water is available.

6. Vaughn Water Company has not typically installed a water line discharge to waste. In the event that a water supply well needs to be flushed or discharged to waste, they typically rent temporary piping and install the piping to discharge to land or a retention basin. If a discharge to waste line is required it will discharge to the ground under Statewide Water Quality Order 2003-0003-DWQ, Statewide General Waste Discharge Requirements for Discharges to Land with a Low Threat to Water Quality. The likely locations that this water will be pumped to are either – above ground sprinkler application of water to NRRPD's Almondale Park or to the existing retention basin within approximately 700-ft of the site with approval from the County of Kern.

If you have any questions or concerns, please feel free to contact me or Curtis M. Skaggs at <u>cskaggs@djacivil.com</u> or (661) 393-4796.

Sincerely,

Steph Thisius-Sanders Planning & Construction Director North of the River Recreation and Park District

## VAUGHN WATER COMPANY MEADOW CREEK WELL WATER SUPPLY AND TREATMENT FACILITY

# MITIGATION MONITORING AND REPORTING PLAN

MAY 2023

### PREFACE

Section 21081 of the California Environmental Quality Act (CEQA) requires a Lead Agency to adopt a Mitigation Monitoring and Reporting Plan whenever it approves a project for which measures have been required to mitigate or avoid significant effects on the environment. The purpose of the monitoring and reporting plan is to ensure compliance with the mitigation measures during project implementation.

The Initial Study and Mitigated Negative Declaration concluded that implementation of the project could result in less-than-significant effects on the environment. Mitigation measures were incorporated into the proposed project to further reduce potential impacts or as required as a condition of project approval. This Mitigation Monitoring and Reporting Plan addresses those measures in terms of how and when they will be implemented.

| Environmental Impacts                                                                                                                         | Mitigation Measures                                                                                                                                                                                                                                                                                                                                                                                    | Responsibility for Implementation | Method of Compliance                                                                                                                                                                          | Timing of Compliance         |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        | Aesthetics                        |                                                                                                                                                                                               |                              |
| Potential impacts to aesthetics with a<br>new source of light or glare which<br>could adversely affect day or nighttime<br>views in the area. | <ol> <li>The project lighting will be<br/>less than 20-ft tall and the light<br/>fixtures shielded and directed<br/>downward to comply with the<br/>Kern County "Dark Skies<br/>Ordinance".</li> <li>The site will be painted a<br/>neutral color (tan), be screened<br/>with an 8-ft tall masonry block<br/>wall, and have landscaping<br/>installed around the perimeter<br/>of the site.</li> </ol> | Construction Contractor           | The Construction Manager will<br>confirm that the lighting, painting,<br>block wall, and site landscaping<br>are constructed and installed as<br>detailed on the plans and<br>specifications. | Prior to project acceptance. |

#### MITIGATION MONITORING AND REPORTING PROGRAM

|                                       |                                  | Air Quality             |                                 |                                   |
|---------------------------------------|----------------------------------|-------------------------|---------------------------------|-----------------------------------|
| Potential impacts to air quality:     | 1. Implementation of a San       | Construction Contractor | The Construction Manager shall  | Prior to and during all phases of |
| Ithough construction emissions will b | pe Joaquin Air Pollution Control |                         | provide necessary training to   | construction.                     |
| emporary and below CEQA threshold     | ls, District Control Plan.       |                         | construction workers regarding  |                                   |
| he proposed project will cause        | 2. Dust suppression BMP's that   |                         | emission control measures, will |                                   |
| emporary negligible increases in      | meet requirements set forth in   |                         | monitor implementation of these |                                   |
| mbient air pollutant concentrations   | Rule 403.2 Fugitive Dust Contro  | I                       | measures, and direct corrective |                                   |
| hat could increase local human        | for the San Joaquin Planning     |                         | actions when and where          |                                   |
| xposure to air contaminants.          | Area:                            |                         | necessary.                      |                                   |
|                                       | a. Use periodic watering for     |                         |                                 |                                   |
|                                       | short term stabilization of      |                         |                                 |                                   |
|                                       | disturbed areas.                 |                         |                                 |                                   |
|                                       | b. Use BMP, such as              |                         |                                 |                                   |
|                                       | construction exit, to prevent    |                         |                                 |                                   |
|                                       | project related track-out onto   |                         |                                 |                                   |
|                                       | publicly maintained surfaces.    |                         |                                 |                                   |
|                                       | c. All visible dirt track-out or |                         |                                 |                                   |
|                                       | spills onto adjacent roads shall |                         |                                 |                                   |
|                                       | be removed. Track-out or spills  |                         |                                 |                                   |
|                                       | will be cleaned up within 24     |                         |                                 |                                   |
|                                       | hours.                           |                         |                                 |                                   |
|                                       | d. All haul trucks transporting  |                         |                                 |                                   |
|                                       | soil, sand, or other loose       |                         |                                 |                                   |
|                                       | material off-site shall be       |                         |                                 |                                   |
|                                       | covered.                         |                         |                                 |                                   |
|                                       | e. Reduce non-essential          |                         |                                 |                                   |
|                                       | grading activities during high   |                         |                                 |                                   |
|                                       | wind conditions.                 |                         |                                 |                                   |

|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Biological Resources    |                                                                                                                                                                                                                                                                    |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Potential impacts if construction<br>activities planned during the nesting<br>season for migratory birds that may<br>nest on or near the site (generally<br>February 1 through August 31). | 1. Nesting bird surveys to be<br>performed prior to the<br>commencement of ground<br>disturbance for project<br>activities. If nexting birds are<br>present, no new construction or<br>ground disturbance should<br>occur within an appropriate<br>avoidance area for that species<br>until young have fledged, unless<br>otherwise approved and<br>monitored by a qualified onsite<br>biologist.                                                                                                                                                                                                                                                                                                                                                                                | Qualified Biologist     | A Qualified Biologist will be<br>responsible for training<br>construction workers, conducting<br>preconstruction surveys,<br>monitoring buffer areas prior to<br>construction and setting up and<br>taking down any avoidance zones.                               | Prior to and during all phases of construction. |
| Potential impacts to environmental<br>species and the general avoidance<br>measures to be followed.                                                                                        | <ol> <li>Traffic restraints and signs<br/>should be established to<br/>minimiize temporary<br/>disturbances during<br/>construction. All construction<br/>traffic should be restricted to<br/>designated access roads and<br/>routes, project site, storage<br/>areas, and staging and parking<br/>areas. Off-road traffic outside<br/>designated project boundaries<br/>will be prohibited. A 20 mile-<br/>per-hour (32 kilometers-per-<br/>hour) speed limit should be<br/>observed in all project<br/>construction areas, except as<br/>otherwise posted on County<br/>and City roads.</li> <li>All equipment storage and<br/>parking during construction<br/>activities should be confined to<br/>the on-site construction area or<br/>public road right-of-ways.</li> </ol> | Construction Contractor | The Construction Manager shall<br>provide necessary training to<br>construction workers regarding<br>best management practices and<br>measures, will monitor<br>implementation of these<br>measures, and direct corrective<br>actions when and where<br>necessary. | Prior to and during all phases of construction. |

3. All project construction activities involving excavation or surface disturbance should be limited to daylight hours with the exception of the well drilling activities.

4. Trenches should be inspected for entrapped wildlife each morning, prior to the onset of construction. Before such holes or trenches are filled, they should be thoroughly inspected for entrapped animals. Any animals so discovered shall be allowed to escape voluntarily, without harassment, before construction activities resume, or removed from the trench or hole by a qualified biologist and allowed to escape unimpeded.

5. All construction pipes, poles, culverts, hoses or similar structures stored at the construction site for one or more overnight periods should be capped or the ends covered in a way that prevents wildlife entrapment. Unburied pipes laid in trenches overnight should be capped. If a kit fox or other listed species is discovered inside a pipe, that section of pipe will not be moved until the animal leaves on its own, or the USFWS and the CDFW have been consulted.

6. All food-related trash items such as wrappers, cans, bottles and food scraps generated by project activities shall be disposed of in closed containers and removed at least once each week from the site. Deliberate feeding of wildlife is prohibited.

7. To prevent harassment of special-status species, construction personnel should not be allowed to have firearms or pets on the project site.

8. All equipment and workrelated materials shall be contained in closed ontainers either in the work area or on vehicles. Loose items (e.g., rags, hose, etc.) should be stored within closed containers or enclosed in vehicles when on the work site.

9. All liquids should be in closed, covered containers. Any spills of hazardous liquids should not be left unattended until cleanup has been

10. Use of rodenticides and herbicides on the project site should be prohibitied unless approved by the USFWS and the CDFW. This is necessary to prevent primiary or secondary poisoning of special-status species using adjacent habitats, and to avoid the depletion of prey upon which they depend. Label restrictions and other restrictions imposed by the U.S. **Environmental Protection** Agency (EPA), the California Department of Food and Agricultural (CDFA), and other state and federal legislation shall be implemented. If rodent control must be conducted, zinc phosphide shall be used because of its proven lower risk to kit foxes.

11. Any employee who inadvertently kills or injures a listed species, or who finds any such animal dead, injured, or entrapped, shall be required to report the incident immediately to a designated site representative (e.g., foreman, project manager, environmental inspector, etc.), except animals killed on state and county roads when such mortality is not associated with project traffic In the case of entrapped animals that are listed species, escape ramps or structures shall be installed immediately, if possible, to allow the subject anima(s) to escape unimpeded.

12. In the case of injured special-status wildlife, the CDFW shall be notified immediately. During business hours, Monday through Friday, the phone number is (559) 243-4017. For non-business hours, report to (800) 952-5400. Notification shall include the date, time, location, and circumstances of the incident. Instructions provided by the CDFW for the care of the injured animal shall be followed by the contractor onsite.

13. In the case of dead animal(s) that are listed as threatened or endangered, the USFWS and the CDFW shall be immediately (within 24 hours) notified by phone or in person and shall document the initial notification in writing within two working days of the findings of any such animal(s). Notification shall include the date, time, location and circumstances of the incident.

14. Prior to commencement of construction on any phase of work, work areas should be clearly marked with fencing, stakes with rope or cord, or other means of delineating the work area boundaries.

15. All personnel entering the project site should attend a worker orientation program. The worker orientation program will present measures required to avoid, minimize, and mitigate impacts to biological resources and will include, at a minimum, the following federeal and state endangered species acts; biolgoical survey results for the current construction area; life history informatinn for the species of concern; biological resource avoidance, minimization, and mitigation requirements; consequences for failure to successfully implement requirements; and procedures to be followed if dead or injured wildlife are located during project activities. Upon completion of the orientation, employees should sign a form stating that they attended the program and understand all biological resource mitigation measures and receive a hard hat sticker or other means of identifying that

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cultural Resources          |                                                                                                                                                                                                     |                                                    |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Potential impacts to cultural resources<br>during construction. | <ol> <li>If an unexpected discovery of<br/>cultural resources or human<br/>remains during any phase of<br/>construciton is made it will<br/>result in an immediate work<br/>stoppage in the vicinity of the<br/>find until resources can be<br/>evaluated by a professional<br/>archaeologist. If the resource is<br/>deemed to be an "important"<br/>cultural resource, impacts will<br/>be mitigated by avoidance,<br/>where feasible.</li> <li>Contractor shall provide a<br/>Cultural Resource Sensitivity<br/>Training Course to all personnel<br/>prior to any ground-disturbing<br/>activites associated with this<br/>project.</li> </ol> |                             | The Construction Manager shall<br>provide necessary training to<br>construction workers regarding<br>cultural resources and what to do<br>if cultural resources or human<br>remains are identified. | Prior to and during all phases of<br>construction. |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hydrology and Water Quality |                                                                                                                                                                                                     |                                                    |
| Potential impacts from groundwater<br>pumping.                  | 1. Vaughn Water Company<br>regularly monitors the<br>groundwater levels in their<br>wells in order to ensure the<br>wells are not excessively<br>lowering groundwater levels in<br>the area. Well monitoring will<br>continue in nearby wells during                                                                                                                                                                                                                                                                                                                                                                                              | Owner                       | The Owner will monitor<br>groundwater levels in their wells<br>to ensure excessive drawdowns<br>are not occurring.                                                                                  | Prior to and during all phases of construction.    |

|                                    | Noise                                                     |                                                                 |
|------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| otential impacts from noise during | 1. Noise levels will be increased Construction Contractor | The Construction Manager will Prior to and during all phases of |
| instruction and operation.         | on a temporary basis during                               | monitor work durations and sound construction.                  |
|                                    | construction activities.                                  | mitigation efforts.                                             |
|                                    | Installation of sound barrier                             |                                                                 |
|                                    | walls will be installed around                            |                                                                 |
|                                    | the south, west, and east sides                           |                                                                 |
|                                    | of the well site during well                              |                                                                 |
|                                    | drilling activities to reduce noise                       |                                                                 |
|                                    | and light to nearby residents.                            |                                                                 |
|                                    | 2. The temporary noise impacts                            |                                                                 |
|                                    | attributed to construction will                           |                                                                 |
|                                    | be mitigated for all                                      |                                                                 |
|                                    | construction, with the exception                          |                                                                 |
|                                    | of the well drilling activities, by                       |                                                                 |
|                                    | limiting the hours of                                     |                                                                 |
|                                    | construction on-site to                                   |                                                                 |
|                                    | weekdays, Monday thru Friday,                             |                                                                 |
|                                    | from 7 am to 5 pm.                                        |                                                                 |
|                                    | 3. The well will be equipped                              |                                                                 |
|                                    | with an insulated motor                                   |                                                                 |
|                                    | enclosure to mitigate motor                               |                                                                 |
|                                    | noise and the electrical and                              |                                                                 |
|                                    | ozone treatment equipment will                            |                                                                 |
|                                    | be located within an insulated                            |                                                                 |
|                                    | metal building. The booster                               |                                                                 |
|                                    | pumps are equipped with                                   |                                                                 |
|                                    | variable speed drives to help                             |                                                                 |
|                                    | run at optimum efficiency and                             |                                                                 |
|                                    | shorter, quieter run times. The                           |                                                                 |
|                                    | well site will be secured with an                         |                                                                 |
|                                    | 8-ft masonry wall, which is 2-ft                          |                                                                 |
|                                    | taller than normal, to help                               |                                                                 |
|                                    | reduce the overal noise impact.                           |                                                                 |