FROM THE MANAGER By Van Graver

YEAR IN REVIEW

The Company experienced minor growth and during 2023 with the addition of 142 new water service connections. The Company served water to approximately 11,443 connections and produced over 3.78 billion gallons of drinking water for the 2023 year. These water demands were met using the Company's 13 water wells, 12 booster pumping plants, 8 activated carbon treatment plants, 5 ozone treatment facilities, and the 4.1 million gallons of above ground water storage capacity. Construction of our new Office Building and our new Meadow Creek Well and Water Treatment Facility are planned for mid to late 2024.

The Company recently initiated the replacement of our "manual read" water meters with a cellular based automated meter reading system. Over the next three years, approximately 12,000 water meters will be replaced with this newer technology to improve overall efficiency. The Company also encourages our customers to set up automated recurring water bill payments through our secure online payment portal found on our website www.vaughnwater.org.

Vaughn Water Company relies exclusively on groundwater for its water supply and encourages everyone to use this precious resource wisely. Winter snowpack throughout the State continued to improve and Kern County received several inches of rainfall during the first few months of the year. Irrigation day restrictions have been lifted; however, continued water conservation efforts are still necessary to sustain our groundwater supplies. Repairing water leaks immediately, adjusting your landscape sprinkler systems for efficient watering, and using water wisely will help us meet State groundwater sustainability regulations and help achieve water conservation goals.

During the summer months, watering your lawn after 6 pm and prior to 9 am will help reduce the amount of water lost to evaporation. We have distribution system operators available that can help determine if you have a leak, adjust your sprinkler timer, teach you to read your water meter, and show you ways to conserve water. These services are available to every Vaughn Water customer at no charge.

Please repair water leaks immediately. If you see leaks, irrigation water flowing down the street or gutters, or any similar waste, kindly bring it to the attention of the resident or call us at (661) 589-2931.

For more water conservation tips visit www.vaughnwater.org or www.saveourh2o.org.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Water Conservation:

Water Conservation has become a new way of life. Water Conservation habits that are developed when there is ample snowpack will help sustain the water supply through growth and dry years. Vaughn Water Company suggests the continuation of the following water conservation habits:

Check and repair leaking pipes, hoses, sprinklers and toilets

Water between 6 p.m. and 9 a.m.

Adjust watering frequency according to the weather and season

Inspect your landscape sprinkler system often. Avoid over watering

Install water saving shower heads and toilets

Help Conserve Water. Use a broom to clean driveways and sidewalks

We value your input!

The Vaughn Water Company Board meets the first Tuesday of the month at 7:30 PM at the Company's headquarters. For more information please contact ou office at (661) 589-2931.

BOARD OF DIRECTORS

Presiden
Vice Presiden
Secretar
Directo
Directo

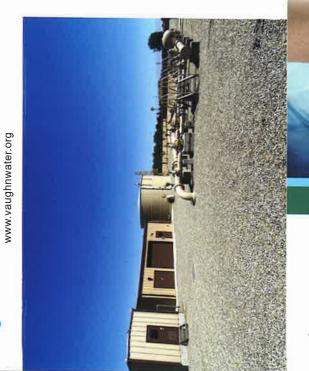
STAFF	
Van I. Grayer	General Manage
CarrieAnn Linenberger	Office Manage
Denny Armstrong	Operations Superviso
T.J. Webb	Distribution System Superviso
Horacio Perez	Operations Technical Assistar
Robin L. Steele	Administrative Assistar
Kristin Coday	Front Office Secretar
Jenna Perez	Billing Clerk
Erik Larson	Certified Operato
Jaime AcevedoSpecia	Projects Coordinator/Lead Operato
Conor Turner	Certified Operato
Gavin Leech-Cook	Utility Person
Daniel Salgado	Utility Person
Eduardo Solis	Utility Person
Riley Stumm	Utility Person
Jacobs Zovela	Lutte - Dansen

laughn Water Company works hard to provide quality water!

Ve're pleased to present to you this year's Annual Prinking Water Quality Report. This report is designed to nform you about the quality of the water and services we leliver to you every day. Our constant goal is to provide ou with a safe and dependable supply of drinking water. Ve put great effort in continual improvement of the water reatment process and protect our water resources. We are committed to ensuring the quality of your water.

Where does our water come from?

aughn Water Company's water comes from thirteen iroundwater Wells.


lame & Location of source(s): Atakapa Well, Clarisse 1 Vell, Clarisse 2 Well, Hageman 1 Well, Hageman 2 Well, leath Well, Meacham 1 Well, Nord Well, Old Town Well, orrey Well, Verdugo 2 Well, Winfield Well, and Willow ond Well.

n assessment of the listed drinking water sources for aughn Water Company was completed in March 2022. A opy of the complete assessment is available at the water ompany's office at 10014 Glenn Street, Bakersfield, CA 3312. You may request a summary of the assessment be ent to you by contacting Vaughn Water Company at (661) 89-2931. The water sources in Vaughn Water Company's ystem are considered most vulnerable to contaminant lumes; high and low density septic systems; sewer ollection systems; oil, gas, and geothermal wells; chemical/ etroleum pipelines; and agricultural/irrigation wells.

PRSRT STD U.S. POSTAGE

10014 Glenn Street Bakersfield, CA 93312

(661) 589-2931

Annual Drinking Water Quality Report July 2024

We test the drinking-water quality for many constituents as required by state and federal regulations.

This report shows the results of our monitoring for the period of January 1-December 31, 2023.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien

10014 Glenn Street, Bakersfield, CA 93312 • (661) 589-2931

Drinking Water Test Results for the year 2023

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allow us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA

Microbioligical Contaminants	Highest No. of Detections	No. of Months in violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	1	0	More than 1 sample in a month with a detection	0	Naturally present in the environment
Fecal Coliform or E. coli	0	0	A routine sample and a repeat sample detect total coliform and either sample also dectects fecal coliform or E. coli	0	Human and animal fecal waste

TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

Lead and Copper	No. of samples collected	90th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb) (2022)	30	ND	0	15	2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)(2022)	30	.04	0	1.3	0,17	Internal corrosion of household plumbing systems; erosions of natural deposits; leaching from wood preservatives

TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS

(and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2022-2023	51.20	18.00-138.00	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2022-2023	44.40	4.99-155.00	None	None	Sum of polyvalent cations present in the water generally magnesium and calcium, the cations are usually naturally occurring.

TABLE 4-DETECTION OF C						
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MHDL]	PHG (MCLG) [MRDLG	Typical Source of Contaminant
Aluminum (ppm)	2022-2023	0.002	ND003	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic (ppb)	2022-2023	2.65	ND-7.00	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (ppm)	2022-2023	0.008	ND-0.1	1	2	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Chromium (ppb)	2022-2023	0.30	ND-4.0	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride (ppm)	2022-2023	0.30	ND-1.10	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (ppb)	2022-2023	0.00	ND	2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland

						and or opicing
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MHDL]	PHG (MCLG) [MRDLG	Typical Source of Contaminant
Nitrate (ppm)	2023	1.84	ND-6.40	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	2022-2023	2.07	.10 - 8.76	15	(0)	Erosion of natural deposits
Uranium (pC/L)	2022-2023	.99	ND - 4.53	20	0.43	Erosion of natural deposits
Dibromochloropropane (ppt)	2022-2023	0	ND - 20.0	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit

Gross Alpha (pCi/L)	2022-2023	2.07	.10 – 8.76	15	(0)	Erosion of natural deposits
Uranium (pC/L)	2022-2023	.99	ND - 4.53	20	0.43	Erosion of natural deposits
Dibromochloropropane (ppt)	2022-2023	0	ND - 20.0	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit
Ethylene Dibromide (ppb)	2022-2023	ND	ND	50	10	Discharge from petroleum refineries; underground gas tank leaks; banned nematocide that may still be present in soils due to runoff and leaching from grain and fruit crops
TThms (Total) Trihalomethanes(ppb)	2022-2023	1.18	ND - 22.00	80	None	By-product of drinking water disinfection
Total Haloacetic Acids (HAA) (ppb)	2023	1.67	ND - 7.00	60	None	By-product of drinking water disinfection

0.45 - 1.76

TABLE 5-DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD

TABLE 3-DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant		
Chloride (ppm)	2022–2023	52.00	ND-177.00	500	None	Runoff/leaching from natural deposits; seawater Influence		
Color (Unfiltered) (Units)	2022–2023	ND	ND	15	None	Naturally -occurring organic materials		
Turbidity (NTU)	2022–2023	.03	ND23	5	None	Soil runoff		
TDS (ppm)	2022–2023	228.50	120.00-530.00	1000	None	Runoff/leaching from natural deposits		
Specific Conductance (µS/cm)	2022–2023	382.60	197.00-781.00	1600	None	Substances that form ions when in water; seawater influence		
Sulfate (ppm)	2022-2023	23.70	.80–66.80	500	None	Runoff/leaching from natural deposits, industrial wastes		
Iron (ppb)	2022–2023	7.7	ND-100.00	300	None	Leaching from natural deposits; industrial wastes		

TABLE 6-DETECTION OF UNREGULATED CONTAMINANTS

Chlorine (ppm)

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level
Boron (ppm)	2022–2023	0.07	ND20	1
Vanadium (ppb)	2022–2023	2.90	ND - 12.0	50
Radon (pCi/L)	2000-2004	.299	31 - 682	None
1,2,3 - Trichloropropane (TCP) (ppt)	2023	3.0	ND - 13.0	5

Laboratory studies indicate that some people who use water containing TCP in excess of the notification level over many years may have an increased risk of cancer. *Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Auditional General Information on Drinking water if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Vaughn Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

[4] Drinking water disinfectant added for treatment

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) inclurivers, lakes, streams, ponds, reservoirs, springs, and wells. As water trave over the surface of the land or through the ground, it dissolves naturally-ocurring minerals and, in some cases, radioactive material, and can pick substances resulting from the presence of animals or from human activity Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come fro sewage treatment plants, septic systems, agricultural livestock operation and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domest wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organ chemicals that are by-products of industrial processes and petroleum pr duction, and can also come from gas stations, urban stormwater runo agricultural application, and septic systems.
- Radioactive contaminants that can be naturally-occurring or be the rest
 of oil and gas production and mining activities,

In order to ensure that tap water is safe to drink, the USEPA and the Californ Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water system Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Additional Information and Explanations

About Arsenic: While your drinking water meets the federal and state star dard for arsenic, it does contain low levels of arsenic. The arsenic star dard balances the current understanding of arsenic's possible health effect against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low le els of arsenic, which is a mineral known to cause cancer in humans at hig concentrations and is linked to other health effects such as skin damage ar circulatory problems.

About Nitrate (as N): Nitrate in drinking water at levels above 10 mg/L is health risk for infants of less than six months of age. Such nitrate levels drinking water can interfere with the capacity of the infant's blood to car oxygen, resulting in a serious illness; symptoms include shortness of brea and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnar women and those with certain specific enzyme deficiencies, If you are carif for an infant, or you are pregnant, you should ask advice from your heal care provider.

About Gross Alpha: Certain minerals are radioactive and may emit a form radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increase risk of getting cancer.

About Uranium: Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased ris of getting cancer.

About Radon: Radon is a radioactive gas that you can't see, taste, or smell, is found throughout the U.S. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up thigh levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other househol activities. Compared to radon entering the home through soil, radon entering the home through tap water will in most cases be a small source of rado in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about rado in your home, test the air in your home. Testing is inexpensive and easy. Fyour home if the level of radon in your air is 4 picocuries per liter of air (pCi/lor higher. There are simple ways to fix a radon problem that aren't too costlifor additional information, call your state radon program or call EPA's Rado Hotline (1-800-SOS-RADON).

Unregulated contaminant monitoring helps EPA and the State Water Resources Control Board to determine where certain contaminants occur an whether the contaminants need to be regulated.

Compliance with Other Regulations

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in d ing water below which there is no known or expected risk to health. MCLG set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water by which there is no known or expected risk to health. PHGs are set by the Cal nia Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfed allowed in drinking water. There is convincing evidence that addition of a diffectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drin water disinfectant below which there is no known or expected risk to he MRDLGs do not reflect the benefits of the use of disinfectants to control mibial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contamin that affect health along with their monitoring and reporting requirements, water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that a taste, odor, or appearance of the drinking water. Contaminants with SDWS not affect the health at the MCL levels,

Treatment Technique (TT): A required process intended to reduce the level contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if ceeded, triggers treatment or other requirements that a water system r follow.

Variances and Exemptions: Department permission to exceed an MCL or comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (ug/L)

ppt: parts per trillion or nanograms per liter (ng/L)

pCi/L: picocuries per liter (a measure of radiation) pS/cm: a measure of specific conductance